Log in

Space charge redistribution in bi-layered resistance switching materials

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In modeling resistance switching of metal oxides, migration of ion species is assumed to explain the local modulation of energy barriers or microscopic changes of stoichiometry. This article addresses an additional aspect of ions migration, that is, space charge redistribution in metal oxides. Modeling charge migration and its impact on current-voltage (I-V) characteristics were evaluated based on a bi-layered switching material composed of a ‘transport layer’ and a ‘tunnel layer’. A dipolar charge profile was assumed to describe a low resistance state, and it was found that the I-V slope of the negative differential resistance regime increases with the initially assumed dipolar space charge density. A similar behavior was demonstrated in experimental I-V characteristics, which were successfully reproduced by the developed model. Space charge redistribution in metal oxides provides additional insight towards obtaining a more complete understanding of resistance switching phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).

    Article  Google Scholar 

  2. D.-H. Kwon et al., Nat. Nanotechnol. 5, 148 (2010).

    Article  ADS  Google Scholar 

  3. S. J. Baik and K. S. Lim, Appl. Phys. Lett. 97, 072109 (2010).

    Article  ADS  Google Scholar 

  4. M. J. Kim et al., in Technical Digest of 2010 IEEE International Electron Device Meeting (San Francisco, California, United States, December 2010), p. 19.3.1.

    Google Scholar 

  5. R. Meyer, L. Schloss, J. Brewer, R. Lambertson, W. Kinney, J. Sanchez and D. Rinerson, in Proceeding of Nonvolatile Memory Technology Workshop (Pacific Grove, California, United States, November 2008), p. 1.

    Google Scholar 

  6. S. Kim and Y.-K. Choi, IEEE trans. On Elect. Dev. 56, 3049 (2009).

    Article  ADS  Google Scholar 

  7. J. Lee et al., in Technical Digest of 2010 IEEE International Electron Device Meeting (San Francisco, California, United States, December 2010), p. 19.5.1.

    Google Scholar 

  8. H. H. Poole, Philos. Mag. Series 6 42, 488 (1921).

    Article  Google Scholar 

  9. A. Gehring and S. Selberherr, IEEE Trans. On Device and Materials Reliability 4, 306 (2004).

    Article  Google Scholar 

  10. X. Guo and T. P. Ma, IEEE Elect. Dev. Lett. 19, 207 (1998).

    Article  ADS  Google Scholar 

  11. S. J. Song, K. M. Kim, G. H. Kim,M. H. Lee, J. Y. Seok, R. Jung and C. S. Hwang, Appl. Phys. Lett. 96, 112904 (2010).

    Article  ADS  Google Scholar 

  12. X. Cao, X. M. Li, X. D. Gao, Y. W. Zhang, X. J. Liu, Q. Wang and L. D. Chen, Appl. Phys. A. 97, 883 (2009).

    Article  ADS  Google Scholar 

  13. W. G. Lee, S. I. Woo, J. C. Kim, S. H. Choi and K. W. Oh, Thin Solid Films 237, 105 (1994).

    Article  ADS  Google Scholar 

  14. S. Jakschik, U. Schroeder, T. Hechy, M. Gutsche, H. Seidl and J. W. Bartha, Thin Solid Films 425, 216 (2003).

    Article  ADS  Google Scholar 

  15. E. Cimpoiasu, S. K. Tolpygo, X. Liu, N. Simonian, J. E. Lukens and K. K. Likharev, J. Appl. Phys. 96, 1088 (2004).

    Article  ADS  Google Scholar 

  16. B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt and K. De Meyer, IEEE Elect. Dev. Lett. 24, 99 (2003).

    Article  ADS  Google Scholar 

  17. T. Tiedje, J. M. Cebulka, D. L. Morel and B. Abeles, Phys. Rev. Lett. 46, 1425 (1981).

    Article  ADS  Google Scholar 

  18. H. Kato, N. Kashio, Y. Ohki, K. S. Soel and T. Noma, J. Appl. Phys. 93, 239 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Jae Baik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baik, S.J. Space charge redistribution in bi-layered resistance switching materials. Journal of the Korean Physical Society 66, 966–971 (2015). https://doi.org/10.3938/jkps.66.966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.966

Keywords

Navigation