Log in

Parameters of the secondary electron yield from metal

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Based on a simple classical model that primary electrons interact with the electron of a lattice via a Coulomb force, the condition that the lattice scattering can be ignored and the energy band of metal, we deduced the formula for the average energy required to produce a secondary electron in metal (ɛ m ) as a function of the work function. Based on the physical characteristics of migration and escape of a secondary electron and the definition of the probability (B m ) of secondary electrons passing over the surface barrier of metal into vacuum, we deduced the formula for B m . In addition, the formula for the ratio of B m to ɛ m (\(\beta _{B_\varepsilon } \)) was obtained. According to the physical characteristic of secondary electron emission and some relationship between the parameters of secondary electron yield (δ), the formula for the mean escape depth from metal (1/α) was successfully deduced. The 1/α calculated from this formula and the values measured experimentally from some metals were compared. Finally, we conclude that the formula for 1/α presented in this paper is universal for the estimating 1/α at any energy and that the formula for \(\beta _{B_\varepsilon } \) is correct and is important for estimating δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. **e, J. Zhang and T. B. Wang, Chin. Phys. Lett. 28, 097901 (2011).

    Article  ADS  Google Scholar 

  2. A. G. **e, C. Q. Li and T. B. Wang, Mod. Phys. Lett. B 23, 2331 (2009).

    Article  ADS  MATH  Google Scholar 

  3. W. Lei, X. B. Zhang and X. D. Zhou, Appl. Surf. Sci. 251, 170 (2005).

    Article  ADS  Google Scholar 

  4. A. G. **e, H. F. Zhao, B. Song and Y. J. Pei, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1761 (2009).

    Article  ADS  Google Scholar 

  5. A. G. **e, Y. J. Yao, J. Su and J. Zhang, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 2565 (2010).

    Article  ADS  Google Scholar 

  6. A. G. **e, J. Zhang and T. B. Wang, Jpn. J. Appl. Phys. 50, 126601 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  7. Y. Kazami, K. Junichiro and O. Norio, Appl. Surf. Sci. 256, 958 (2009).

    Article  Google Scholar 

  8. Y. Masaaki, T. Keiji and K. Hiroaki, Appl. Surf. Sci. 169, 78 (2009).

    Google Scholar 

  9. J. Tauc and A. Abraham, Czech. J. Phys. 9, 95 (1959).

    Article  ADS  Google Scholar 

  10. A. Smith and D. Dutton, J. Opt. Soc. Am. 48, 1007 (1958).

    Article  ADS  Google Scholar 

  11. J. R. Fiebiger and R. S. Muller, J. Appl. Phys. 43, 3202 (1972).

    Article  ADS  Google Scholar 

  12. R. D. Ryan, IEEE Trans. Nucl. Sci. NS-20, 473 (1973).

    Article  ADS  Google Scholar 

  13. T. Kobayashi, T. Sugita, M. Koyama and S. Takayanagi, IEEE Trans. Nucl. Sci. NS-19, 324 (1972).

    Article  ADS  Google Scholar 

  14. A. Cornet, P. Siffert, A. Coche and R. Tribelet, Appl. Phys. Lett. 17, 422 (1970).

    Article  ADS  Google Scholar 

  15. T. Kobayashi, Appl. Phys. Lett. 21, 150 (1972).

    Article  ADS  Google Scholar 

  16. K. A. Yamakawa, Phys. Rev. 82, 522 (1951).

    Article  ADS  Google Scholar 

  17. V. V. Makarov and N. N. Petrov, Sov. Phys.-Semicond. 5, 447 (1971).

    Google Scholar 

  18. V. V. Makarov, Sov. Phys.-Semicond. 9, 526 (1975).

    Google Scholar 

  19. E. A. Konorova and S. F. Kozlov, Sov. Phys.-Semicond. 4, 1600 (1971).

    Google Scholar 

  20. S. F. Kozlov, R. Stuck, M. Hage-Ali and P. Siffert, IEEE Trans. Nucl. Sci. NS-22, 160 (1975).

    Article  ADS  Google Scholar 

  21. G. A. Ausman and F. B. Mclean, Appl. Phys. Lett. 26, 173 (1975).

    Article  ADS  Google Scholar 

  22. W. Shockley, Solid-State. Electron. 2, 35 (1961).

    Article  ADS  Google Scholar 

  23. C. A. Klein, J. Appl. Phys. 39, 2029 (1968).

    Article  ADS  Google Scholar 

  24. R. C. Alig and S. Bloom, J. Appl. Phys. 49, 3476 (1978).

    Article  ADS  Google Scholar 

  25. E. M. Baroody, Phys. Rev. 78, 780 (1950).

    Article  ADS  MATH  Google Scholar 

  26. http://physics.nist.gov/PhysRefData/Star/Text/appendix.html.

  27. http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.

  28. L. Reimer and H. Drescher, J. Phys. D. 10, 805 (1977).

    Article  ADS  Google Scholar 

  29. A. van der Ziel, Solid State Physical Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, 1968), p. 172.

    Google Scholar 

  30. H. Seiler, J. Appl. Phys. 54, R1 (1983).

    Article  ADS  Google Scholar 

  31. http://zh.wikipedia.org/zh-cn/.

  32. K. Kanaya and H. Kawakatsu, J. Phys. D. 5, 1727 (1972).

    Article  ADS  Google Scholar 

  33. J. Olesik and B. Causiski, Thin. Solid. Films. 238, 271 (1994).

    Article  ADS  Google Scholar 

  34. S. Ono and K. Kanaya, J. Phys. D. 12, 619 (1979).

    Article  ADS  Google Scholar 

  35. H. Drescher, L. Reimer and H. Seidel, Z. Angew. Phys. 29, 331 (1970).

    Google Scholar 

  36. W. Reuter, in Proceedings of the Six International Conference on X-ray Optics and Microanalysis (Tokyo: Uinversity of Tokyo Press, 1972), p. 121.

    Google Scholar 

  37. D. A. Moncrieff and P. R. Barker Scanning 1, 195 (1976).

    Google Scholar 

  38. I. M. Bronsiitein and B. S. Fraiman, Sov. Phys.-Solid State 3, 1188 (1961).

    Google Scholar 

  39. L. Reimer and C. Tolkamp, Scanning 3, 35 (1980).

    Article  Google Scholar 

  40. D. B. Wittry, in Proc. 4th Conf. on X-ray Optics and Microanalysis (Hermann: Paris, 1966), p. 168.

    Google Scholar 

  41. I. M. Bronsiitein and R. B. Segal, Sov. Phys.-Doklady 3, 1184 (1958).

    Google Scholar 

  42. J. M. Bronsiitein and R. B. Segal, Sov. Phys.-Solid State 1, 1375 (1960).

    Google Scholar 

  43. J. M. Bronsiitein and B. S. Fraiman, Rad. Eng. Electrom. Phys. 7, 1530 (1962).

    Google Scholar 

  44. http://www.mc-set.com/science/eesd/show images.php.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Gen **e.

Rights and permissions

Reprints and permissions

About this article

Cite this article

**e, AG., Wu, HY. & Xu, J. Parameters of the secondary electron yield from metal. Journal of the Korean Physical Society 62, 725–730 (2013). https://doi.org/10.3938/jkps.62.725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.725

Keywords

Navigation