Log in

Suppression on the basis of template for rejection is reactive: Evidence from human electrophysiology

  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

According to most theories of attention, the selection of task-relevant visual information can be enhanced by holding them in visual working memory (VWM). However, there has been a long-standing debate concerning whether similar optimization can also be achieved for task-irrelevant information, known as a “template for rejection”. The present study aimed to explore this issue by examining the consequence of cue distractors before visual search tasks. For this endeavor, we manipulated the display heterogeneity by using two distractor conditions, salient and non-salient, to explore the extent to which holding the distractor color in VWM might affect attentional selection. We measured the reaction times of participants while their EEG activity was recorded. The results showed that WM-matched distractors did not improve reaction times but rather slowed them down in both tasks. Event-related potential (ERP) results showed that the display heterogeneity had no modulatory effect on the degree of distractor suppression. Even in the salient distractor condition, the WM-matched distractor received no greater suppression. Furthermore, the WM-matched distractor but not the neutral distractor elicited an N2pc before the PD in salient distractor conditions. This suggests that the template for rejection operates reactively since suppression occurs after extra attentional processes to the distractor. Moreover, the presence of WM-matched distractors led to a reduction of P3b, indicating a competition between target processing and WM-matched distractor rejection. Our findings provide insights into the mechanisms underlying the optimization of attentional selection, and have implications for future studies aimed at understanding the role of VWM in cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

We have no plans to submit data availability statements. Data and materials for the experiments are available upon request from the authors.

Notes

  1. In the classic flanker task, the target is surrounded on either side by task-irrelevant distractors that can share the same or a different response as the target. The typical result is that RTs are longer when the peripheral distractors are response incongruent than when the flankers are congruent with the response to the centrally presented target. One would account for this slower performance as distractor interference instead of attention captured by peripheral distractors.

References

  • Addleman, D. A., & Störmer, V. S. (2022). No evidence for proactive suppression of explicitly cued distractor features. Psychonomic Bulletin & Review, 29(4), 1338–1346.

  • Akyürek, E. G., Leszczyński, M., & Schubö, A. (2010). The temporal locus of the interaction between working memory consolidation and the attentional blink. Psychophysiology, 47(6), 1134–1141.

    PubMed  Google Scholar 

  • Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 580–584.

    PubMed  Google Scholar 

  • Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55(5), 485–496.

    Article  Google Scholar 

  • Barras, C., & Kerzel, D. (2017). Salient-but-irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search. Psychophysiology, 54, 1826–1838.

    Article  PubMed  Google Scholar 

  • Beck, V. M., & Hollingworth, A. (2015). Evidence for negative feature guidance in visual search is explained by spatial recoding. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1190–1196.

    PubMed  Google Scholar 

  • Beck, V. M., Luck, S. J., & Hollingworth, A. (2018). Whatever you do, don’t look at the...: Evaluating guidance by an exclusionary attentional template. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 645–662.

    PubMed  Google Scholar 

  • Becker, S. I. (2007). Irrelevant singletons in pop-out search: Attentional capture or filtering costs? Journal of Experimental Psychology: Human Perception & Performance, 33(4), 764–787.

    Google Scholar 

  • Becker, M. W., Hemsteger, S., & Peltier, C. (2015). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 23(9–10), 1150–1167.

    Article  Google Scholar 

  • Bell, R., Röer, J. P., Dentale, S., & Buchner, A. (2012). Habituation of the irrelevant sound effect: Evidence for an attentional theory of short-term memory disruption. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(6), 1542–1557.

    PubMed  Google Scholar 

  • Berggren, N., & Eimer, M. (2018). Object-based target templates guide attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(9), 1368–1382.

    PubMed  Google Scholar 

  • Berggren, N., & Eimer, M. (2021). The guidance of attention by templates for rejection during visual search. Attention, Perception, & Psychophysics, 83(1), 38–57.

    Article  Google Scholar 

  • Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology, 50(5), 422–430.

    Article  PubMed  Google Scholar 

  • Carlisle, N. B. (2023). Negative and positive templates: Two forms of cued attentional control. Attention, Perception, & Psychophysics, 85(3), 585–595.

    Article  Google Scholar 

  • Carlisle, N. B., & Nitka, A. W. (2019). Location-based explanations do not account for active attentional suppression. Visual Cognition, 27(3–4), 305–316.

    Article  Google Scholar 

  • Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. Journal of Neuroscience, 31(25), 9315–9322.

    Article  PubMed  Google Scholar 

  • Chen, X., Xu, B., Chen, Y., Zeng, X., Zhang, Y., & Fu, S. (2023). Saliency affects attentional capture and suppression of abrupt-onset and color singleton distractors: Evidence from event-related potential studies. Psychophysiology, 60, e14290.

    Article  PubMed  Google Scholar 

  • Conci, M., Deichsel, C., Müller, H. J., & Töllner, T. (2019). Feature guidance by negative attentional templates depends on search difficulty. Visual Cognition, 27(3–4), 317–326.

    Article  Google Scholar 

  • Cosman, J. D., Arita, J. T., Ianni, J. D., & Woodman, G. F. (2016). Electrophysiological measurement of information flow during visual search. Psychophysiology, 53(4), 535–543.

    Article  PubMed  Google Scholar 

  • Dell’Acqua, R., Dux, P. E., Wyble, B., Doro, M., Sessa, P., Meconi, F., & Jolicœur, P. (2015). The attentional blink impairs detection and delays encoding of visual information: Evidence from human electrophysiology. Journal of Cognitive Neuroscience, 27, 720–735.

    Article  PubMed  Google Scholar 

  • Dell’Acqua, R., Doro, M., Dux, P. E., Losier, T., & Jolicour, P. (2016). Enhanced frontal activation underlies sparing from the attentional blink: Evidence from human electrophysiology. Psychophysiology, 53(5), 623–633.

    Article  PubMed  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222.

    Article  PubMed  Google Scholar 

  • Dowd, E. W., Kiyonaga, A., Egner, T., & Mitroff, S. R. (2015). Attentional guidance by working memory differs by paradigm: An individual-differences approach. Attention, Perception, & Psychophysics, 77(3), 704–712.

    Article  Google Scholar 

  • Drisdelle, B. L., Corriveau, I., Fortier-Gauthier, U., & Jolicoeur, P. (2023). Task-irrelevant filler items alter the dynamics of electrical brain activity during visual search. Quarterly Journal of Experimental Psychology, 76(6), 1245–1263.

    Article  Google Scholar 

  • Duncan, J., & Humphreys, G. (1992). Beyond the Search Surface. Journal of Experimental Psychology Human Perception & Performance, 18(2), 578–588.

    Article  Google Scholar 

  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225–234.

    Article  PubMed  Google Scholar 

  • Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847–858.

    PubMed  Google Scholar 

  • Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030–1044.

    PubMed  Google Scholar 

  • Fortier-Gauthier, U., Moffat, N., Dell’Acqua, R., McDonald, J. J., & Jolicœur, P. (2012). Contralateral cortical organisation of information in visual short-term memory: Evidence from lateralized brain activity during retrieval. Neuropsychologia, 50(8), 1748–1758.

    Article  PubMed  Google Scholar 

  • Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265–1280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspelin, N., & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92.

    Article  PubMed  Google Scholar 

  • Gaspelin, N., & Luck, S. J. (2019). Inhibition as a potential resolution to the attentional capture debate. Current Opinion in Psychology, 29, 12–18.

    Article  PubMed  Google Scholar 

  • Gaspelin, N., Lamy, D., Egeth, H. E., Liesefeld, H. R., Kerzel, D., Mandal, A., … van Moorselaar, D. (2023). The distractor positivity component and the inhibition of distracting stimuli. Journal of Cognitive Neuroscience, 35(11), 1693–1715.

  • Gunseli, E., Olivers, C. N., & Meeter, M. (2014). The handoff of the attentional template from working memory after repeated search: The effects of task difficulty. Journal of Vision, 14(10), 712–712.

    Article  Google Scholar 

  • Han, S. W., & Kim, M.-S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1292–1302.

    PubMed  Google Scholar 

  • Hickey, C., Di Lollo, V., & McDonald, J. J. (2008). Target and distractor processing in visual search: Decomposition of the N2pc. Visual Cognition, 16(1), 110–113.

    Google Scholar 

  • Hilimire, M. R., Mounts, J. R. W., Parks, N. A., & Corballis, P. M. (2011). Dynamics of target and distractor processing in visual search: Evidence from event-related brain potentials. Neuroscience Letters, 495(3), 196–200.

    Article  PubMed  Google Scholar 

  • Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39, 1713–1730.

    PubMed  Google Scholar 

  • Jennings, J. R., & Wood, C. C. (1976). The e-adjustment procedure for repeated-measures analyses of variance. Psychophysiology, 13(3), 277–278.

    Article  PubMed  Google Scholar 

  • Kerzel, D., & Hyunh Cong, S. (2022). Biased competition between targets and distractors reduces attentional suppression: Evidence from the positivity posterior contralateral and distractor positivity. Journal of Cognitive Neuroscience, 34(9), 1563–1575.

    Article  PubMed  Google Scholar 

  • Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention: Toward an integrative account of internal and external selection processes. Psychonomic Bulletin & Review, 20, 228–242.

    Article  Google Scholar 

  • Kugler, G., ‘t hart, B. M., Kohlbecher, S., Einhäuser, W., & Schneider, E. (2015). Gaze in visual search is guided more efficiently by positive cues than by negative cues. PloS One, 10(12), e0145910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Soto, D., & Humphreys, G. W. (2009). Electrophysiological evidence for attentional guidance by the contents of working memory. European Journal of Neuroscience, 30(2), 307–317.

    Article  PubMed  Google Scholar 

  • Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75–82.

    Article  PubMed  Google Scholar 

  • Lawrence, M. A. (2011). ez: Easy analysis and visualization of factorial experiments. Computer Software Manual (R Package Version 3.0- 0).

  • Leber, A. B., & Egeth, H. E. (2006). It’s under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13(1), 132–138.

    Article  Google Scholar 

  • Leblanc, É., Prime, D. J., & Jolicoeur, P. (2008). Tracking the location of visuospatial attention in a contingent capture paradigm. Journal of Cognitive Neuroscience, 20(4), 657–671.

    Article  PubMed  Google Scholar 

  • Liesefeld, H. R., Liesefeld, A. M., Töllner, T., & Müller, H. J. (2017). Attentional capture in visual search: Capture and post-capture dynamics revealed by EEG. NeuroImage, 156, 166–173.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology, 54(1), 146–157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1000–1014.

    PubMed  Google Scholar 

  • Luck, S. J., Gaspelin, N., Folk, C. L., Remington, R. W., & Theeuwes, J. (2021). Progress toward resolving the attentional capture debate. Visual Cognition, 29(1), 1–21.

    Article  PubMed  Google Scholar 

  • Mayer, J. S., Bittner, R. A., Nikolić, D., Bledowski, C., Goebel, R., & Linden, D. E. (2007). Common neural substrates for visual working memory and attention. NeuroImage, 36(2), 441–453.

    Article  PubMed  Google Scholar 

  • Mazza, V., Turatto, M., & Caramazza, A. (2009). Attention selection, distractor suppression and N2pc. Cortex, 45(7), 879–890.

    Article  PubMed  Google Scholar 

  • Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignoredd items. Attention, Perception, & Psychophysics, 74(8), 1590–1605.

    Article  Google Scholar 

  • Monnier, A., Dell’Acqua, R., & Jolicoeur, P. (2020). Distilling the salient contralateral and ipsilateral attentional responses to lateral stimuli and the bilateral response to midline stimuli for upper and lower visual hemifield locations. Psychophysiology, 57(11), e13651.

    Article  PubMed  Google Scholar 

  • Olivers, C. N. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275–1291.

    PubMed  Google Scholar 

  • Peters, J. C., Roelfsema, P. R., & Goebel, R. (2008). Selective attentional guidance by items in working memory: converging fMRI and ERP results. NeuroImage, 41(s96). https://cris.maastrichtuniversity.nl/en/publications/selective-attentional-guidance-by-items-in-working-memory-converg

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://scholar.google.com/scholar?q=R%20Core%20Team%2C%202020.%20R%3A%20A%20language%20and%20environment%20for%20statistical%20computing

  • Rac-Lubashevsky, R., & Kessler, Y. (2019). Revisiting the relationship between the P3b and working memory updating. Biological Psychology, 148, 107769.

    Article  PubMed  Google Scholar 

  • Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470.

    Article  Google Scholar 

  • Sawaki, R., & Luck, S. J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20(2), 296–301.

    Article  Google Scholar 

  • Sharbrough, F. (1991). American Electroencephalographic Society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 8(2), 200–202.

    Article  Google Scholar 

  • Soto, D., Humphreys, G. W., & Rotshtein, P. (2007). Dissociating the neural mechanisms of memory-based guidance of visual selection. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 17186–17191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanda, T., & Kawahara, J. (2019). Association between cue lead time and template-for-rejection effect. Attention, Perception & Psychophysics, 81(6), 1880–1889.

    Article  Google Scholar 

  • Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta Psychologica, 135(2), 77–99.

    Article  PubMed  Google Scholar 

  • Turatto, M., & Pascucci, D. (2016). Short-term and long-term plasticity in the visual-attention system: Evidence from habituation of attentional capture. Neurobiology of Learning and Memory, 130, 159–169.

    Article  PubMed  Google Scholar 

  • van Moorselaar, D., Theeuwes, J., & Olivers, C. N. (2016). Learning changes the attentional status of prospective memories. Psychonomic Bulletin & Review, 23(5), 1483–1490.

    Article  Google Scholar 

  • Vogel, E. K., & Luck, S. J. (2002). Delayed working memory consolidation during the attentional blink. Psychonomic Bulletin & Review, 9(4), 739–743.

    Article  Google Scholar 

  • Weaver, M. D., van Zoest, W., & Hickey, C. (2017). A temporal dependency account of attentional inhibition in oculomotor control. NeuroImage, 147, 880–894.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698–703.

    Article  PubMed  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 121–138.

    PubMed  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363–377.

    PubMed  Google Scholar 

  • Wykowska, A., & Schubö, A. (2011). Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs. Journal of Cognitive Neuroscience, 23(3), 645–660.

    Article  PubMed  Google Scholar 

  • Zhang, Z., & Carlisle, N. B. (2023). Assessing recoding accounts of negative attentional templates using behavior and eye tracking. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(4), 509.

    PubMed  Google Scholar 

  • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Gaspelin, N., & Carlisle, N. B. (2020). Probing early attention following negative and positive templates. Attention, Perception, & Psychophysics, 82(3), 1166–1175.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 31970993 and No. 32271107) to SF. Data and materials for the experiments are available upon request from the authors. The experiment was not preregistered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimin Fu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, C., Chen, Y., Zhang, Y. et al. Suppression on the basis of template for rejection is reactive: Evidence from human electrophysiology. Atten Percept Psychophys 86, 1148–1162 (2024). https://doi.org/10.3758/s13414-024-02873-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13414-024-02873-y

Keywords

Navigation