Log in

The role of carrier spectral composition in the perception of musical pitch

  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

Temporal envelope fluctuations of natural sounds convey critical information to speech and music processing. In particular, musical pitch perception is assumed to be primarily underlined by temporal envelope encoding. While increasing evidence demonstrates the importance of carrier fine structure to complex pitch perception, how carrier spectral information affects musical pitch perception is less clear. Here, transposed tones designed to convey identical envelope information across different carriers were used to assess the effects of carrier spectral composition to pitch discrimination and musical-interval and melody identifications. Results showed that pitch discrimination thresholds became lower (better) with increasing carrier frequencies from 1k to 10k Hz, with performance comparable to that of pure sinusoids. Musical interval and melody defined by the periodicity of sine- or harmonic complex envelopes across carriers were identified with greater than 85% accuracy even on a 10k-Hz carrier. Moreover, enhanced interval and melody identification performance was observed with increasing carrier frequency up to 6k Hz. Findings suggest a perceptual enhancement of temporal envelope information with increasing carrier spectral region in musical pitch processing, at least for frequencies up to 6k Hz. For carriers in the extended high-frequency region (8–20k Hz), the use of temporal envelope information to music pitch processing may vary depending on task requirement. Collectively, these results implicate the fidelity of temporal envelope information to musical pitch perception is more pronounced than previously considered, with ecological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data for this study is available upon request to the corresponding author.

References

  • Allen, E. J., & Oxenham, A. J. (2014). Symmetric interactions and interference between pitch and timbre. The Journal of the Acoustical Society of America, 135(3), 1371–1379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2002). Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli.” The Journal of the Acoustical Society of America, 112(3), 1026–1036.

    Article  PubMed  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2011). Lateralization produced by envelope-based interaural temporal disparities of high-frequency, raised-sine stimuli: Empirical data and modeling. The Journal of the Acoustical Society of America, 129(3), 1501–1508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianchi, F., Santurette, S., Wendt, D., & Dau, T. (2016). Pitch discrimination in musicians and nonmusicians: Effects of harmonic resolvability and processing effort. Journal of the Association for Research in Otolaryngology, 17(1), 69–79.

    Article  PubMed  Google Scholar 

  • Bidelman, G. M., Krishnan, A., & Gandour, J. T. (2011). Enhanced brainstem encoding predicts musicians’ perceptual advantages with pitch. European Journal of Neuroscience, 33(3), 530–538.

    Article  PubMed  Google Scholar 

  • Burns, E. M., & Viemeister, N. F. (1976). Nonspectral pitch. The Journal of the Acoustical Society of America, 60(4), 863–869.

    Article  Google Scholar 

  • Burns, E. M., & Viemeister, N. F. (1981). Played-again sam: Further observations on the pitch of amplitude-modulated noise. The Journal of the Acoustical Society of America, 70(6), 1655–1660.

    Article  Google Scholar 

  • Carcagno, S., Lakhani, S., & Plack, C. J. (2019). Consonance perception beyond the traditional existence region of pitch. The Journal of the Acoustical Society of America, 146(4), 2279–2290.

    Article  PubMed  Google Scholar 

  • Carlyon, R. P. (1996). Encoding the fundamental frequency of a complex tone in the presence of a spectrally overlap** masker. The Journal of the Acoustical Society of America, 99(1), 517–524.

    Article  PubMed  Google Scholar 

  • Coffey, E., Herholz, S., Scala, S., & Zatorre, R. (2011). Montreal music history questionnaire: A tool for the assessment of music-related experience in music cognition research. The Neurosciences and Music IV: Learning and Memory, Conference. Edinburgh, UK.

  • Dau, T., Verhey, J., & Kohlrausch, A. (1999). Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers. The Journal of the Acoustical Society of America, 106(5), 2752–2760.

    Article  PubMed  Google Scholar 

  • de Boer, E. (1956). On the “residue” in hearing. Doctorial dissertation, University of Amsterdam.

  • Glasberg, B. R., & Moore, B. C. J. (1990). Derivation of auditory filter shapes from notched-noise data. Hearing Research, 47(1/2), 103–138.

    Article  PubMed  Google Scholar 

  • Gockel, H. E., & Carlyon, R. P. (2018). Detection of mistuning in harmonic complex tones at high frequencies. Acta Acustica united with Acustica, 104(5), 766–769.

    Article  Google Scholar 

  • Gockel, H., Carlyon, R. P., & Moore, B. C. J. (2005). Pitch discrimination interference: The role of pitch pulse asynchrony. The Journal of the Acoustical Society of America, 117(6), 3860–3866.

    Article  PubMed  Google Scholar 

  • Grimault, N. (2016). Can temporal fine structure and temporal envelope be considered independently for pitch perception? Advances in Experimental Medicine and Biology, 894, 355–362.

    Article  PubMed  Google Scholar 

  • Hatoh, T., & Ohgushi, K. (1991). On the perception of the musical pitch of high frequency tones. The Journal of the Acoustical Society of Japan, 47, 92–95.

    Google Scholar 

  • Holdsworth, J., Nimmo-Smith, I., Patterson, R., & Rice, P. (1988). Implementing a gammatone filter bank. In SVOS final report (Part A): The auditory filterbank (pp. 1–5). University of Cambridge.

  • Holmes, E., Kinghorn, E. E., McGarry, L. M., Busari, E., Griffiths, T. D., & Johnsrude, I. S. (2022). Pitch discrimination is better for synthetic timbre than natural musical instrument timbres despite familiarity. The Journal of the Acoustical Society of America, 152(1), 31–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins, K., & Moore, B. C. J. (2009). The contribution of temporal fine structure to the intelligibility of speech in steady and modulated noise. The Journal of the Acoustical Society of America, 125(1), 442–446.

    Article  PubMed  Google Scholar 

  • Hsieh, I.-H., & Saberi, K. (2016). Imperfect pitch: Gabor’s uncertainty principle and the pitch of extremely brief sounds. Psychonomic Bulletin & Review, 23(1), 163–171.

    Article  Google Scholar 

  • Kale, S., Micheyl, C., & Heinz, M. G. (2014). Implications of within-fiber temporal coding for perceptual studies of f0 discrimination and discrimination of harmonic and inharmonic tone complexes. Journal of the Association for Research in Otolaryngology, 15(3), 465–482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishon-Rabin, L., Amir, O., Vexler, Y., & Zaltz, Y. (2001). Pitch discrimination: Are professional musicians better than nonmusicians? Journal of Basic and Clinical Physiology and Pharmacology, 12(2, Suppl.), 125–143.

    Article  PubMed  Google Scholar 

  • Kong, Y. Y., Cruz, R., Jones, J. A., & Zeng, F. G. (2004). Music perception with temporal cues in acoustic and electric hearing. Ear and Hearing, 25(2), 173–185.

    Article  PubMed  Google Scholar 

  • Kohlrausch, A., Fassel, R., & Dau, T. (2000). The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. The Journal of the Acoustical Society of America, 108(2), 723–734.

    Article  PubMed  Google Scholar 

  • Kreft, H. A., Nelson, D. A., & Oxenham, A. J. (2013). Modulation frequency discrimination with modulated and unmodulated interference in normal hearing and in cochlear-implant users. Journal of the Association for Research in Otolaryngology, 14(4), 591–601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, K. M., Skoe, E., Kraus, N., & Ashley, R. (2009). Selective subcortical enhancement of musical intervals in musicians. Journal of Neuroscience, 29(18), 5832–5840.

    Article  PubMed  Google Scholar 

  • Levitt, H. (1971). Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America, 49(2B), 467–477.

    Article  Google Scholar 

  • Luo, X., Masterson, M. E., & Wu, C. (2014). Melodic interval perception by normal-hearing listeners and cochlear implant users. The Journal of the Acoustical Society of America, 136(4), 1831–1844.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madsen, S. M. K., Whiteford, K. L., & Oxenham, A. J. (2017). Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Scientific Reports, 7(1), 1–9, Article 12624.

  • McClaskey, C. M. (2017). Standard-interval size affects interval-discrimination thresholds for pure-tone melodic pitch intervals. Hearing Research, 355, 64–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDermott, H. J. (2004). Music perception with cochlear implants: A review. Trends in Amplification, 8(2), 49–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meddis, R., & Hewitt, M. J. (1991a). Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. The Journal of the Acoustical Society of America, 89(6), 2866–2882.

    Article  Google Scholar 

  • Meddis, R., & Hewitt, M. J. (1991b). Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity. The Journal of the Acoustical Society of America, 89(6), 2883–2894.

    Article  Google Scholar 

  • Mehta, A. H., & Oxenham, A. J. (2018). Fundamental-frequency discrimination based on temporal-envelope cues: Effects of bandwidth and interference. The Journal of the Acoustical Society of America, 144(5), EL423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Micheyl, C., Delhommeau, K., Perrot, X., & Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 219(1/2), 36–47.

    Article  PubMed  Google Scholar 

  • Monaghan, J. J. M., Bleeck, S., & McAlpine, D. (2015). Sensitivity to envelope interaural time differences at high modulation rates. Trends in Hearing, 19, 2331216515619331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, B. C. J. (2019). The roles of temporal envelope and fine structure information in auditory perception. Acoustical Science and Technology, 40(2), 61–83.

    Article  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (2001). Temporal modulation transfer functions obtained using sinusoidal carriers with normally hearing and hearing-impaired listeners. The Journal of the Acoustical Society of America, 110(2), 1067–1073.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., Flanagan, H. J., & Adams, J. (2006). Frequency discrimination of complex tones; assessing the role of component resolvability and temporal fine structure. The Journal of the Acoustical Society of America, 119(1), 480–490.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., & Sęk, A. (2009). Sensitivity of the human auditory system to temporal fine structure at high frequencies. The Journal of the Acoustical Society of America, 125(5), 3186–3193.

    Article  PubMed  Google Scholar 

  • Moore, G. A., & Moore, B. C. J. (2003). Perception of the low pitch of frequency-shifted complexes. The Journal of the Acoustical Society of America, 113(2), 977–985.

    Article  PubMed  Google Scholar 

  • Musacchia, G., Strait, D., & Kraus, N. (2008). Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and nonmusicians. Hearing Research, 241(1/2), 34–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  Google Scholar 

  • Oxenham, A. J. (2018). How we hear: The perception and neural coding of sound. Annual Reviews in Psychology, 69, 27–50.

    Article  Google Scholar 

  • Oxenham, A. J., Bernstein, J. G. W., & Penagos, H. (2004). Correct tonotopic representation is necessary for complex pitch perception. Proceedings of the National Academy of Sciences of the United States of America, 101(5), 1421–1425.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oxenham, A. J., Micheyl, C., Keebler, M. V., Loper, A., & Santurette, S. (2011). Pitch perception beyond the traditional existence region of pitch. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7629–7634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Penninger, R. T., Chien, W. W., Jiradejvong, P., Boeke, E., Carver, C. L., & Limb, C. J. (2013). Perception of pure tones and iterated rippled noise for normal hearing and cochlear implant users. Trends in Amplification, 17(1), 45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plack, C. J., & Oxenham, A. J. (2005a). Overview: The present and future of pitch. In C. J. Plack, R. R. Fay, A. J. Oxenham, & A. N. Popper (Eds.), Pitch: Neural coding and perception (pp. 1–6). Springer.

    Chapter  Google Scholar 

  • Plack, C. J., & Oxenham, A. J. (2005b). The psychophysics of pitch. In C. J. Plack, R. R. Fay, A. J. Oxenham, & A. N. Popper (Eds.), Pitch: Neural coding and perception (pp. 7–55). Springer.

    Chapter  Google Scholar 

  • Rubinstein, J. T., Wilson, B. S., Finley, C. C., & Abbas, P. J. (1999). Pseudospontaneous activity: Stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Research, 127(1/2), 108–118.

    Article  PubMed  Google Scholar 

  • Russo, F. A., & Thompson, W. F. (2005). An interval size illusion: The influence of timbre on the perceived size of melodic intervals. Perception & Psychophysics, 67(4), 559–568.

    Article  Google Scholar 

  • Santurette, S., & Dau, T. (2011). The role of temporal fine structure information for the low pitch of high-frequency complex tones. The Journal of the Acoustical Society of America, 129(1), 282–292.

    Article  PubMed  Google Scholar 

  • Schouten, J. F., Ritsma, R. J., & Cardozo, B. L. (1962). Pitch of the residue. The Journal of the Acoustical Society of America, 34, 1418–1424.

    Article  Google Scholar 

  • Semal, C., & Demany, L. (1990). The upper limit of “musical” pitch. Music Perception, 8(2), 165–175.

    Article  Google Scholar 

  • Shofner, W. P., & Chaney, M. (2013). Processing pitch in a nonhuman mammal (Chinchilla laniger). Journal of Comparative Psychology (Washington, D.C. : 1983), 127(2), 142–153.

    Article  PubMed  Google Scholar 

  • Song, X., Osmanski, M. S., Guo, Y., & Wang, X. (2016). Complex pitch perception mechanisms are shared by humans and a new world monkey. Proceedings of the National Academy of Sciences, 113(3), 781–786.

    Article  Google Scholar 

  • van de Par, S., & Kohlrausch, A. (1997). A new approach to comparing binaural masking level differences at low and high frequencies. The Journal of the Acoustical Society of America, 101(3), 1671–1680.

    Article  PubMed  Google Scholar 

  • Vandali, A. E., Sucher, C., Tsang, D. J., McKay, C. M., Chew, J. W. D., & McDermott, H. J. (2005). Pitch ranking ability of cochlear implant recipients: A comparison of sound-processing strategies. The Journal of the Acoustical Society of America, 117(5), 3126–3138.

    Article  PubMed  Google Scholar 

  • Veale, J. (2013). Edinburgh Handedness Inventory-Short Form: A revised version based on confirmatory factor analysis. Laterality, 19(2), 164–177.

    Article  PubMed  Google Scholar 

  • Verschooten, E., Shamma, S., Oxenham, A. J., Moore, B. C. J., Joris, P. X., Heinz, M. G., & Plack, C. J. (2019). The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints. Hearing Research, 377, 109–121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiteford, K. L., Kreft, H. A., & Oxenham, A. J. (2020). The role of cochlear place coding in the perception of frequency modulation. Elife, 9, e58468.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarate, J. M., Ritson, C. R., & Poeppel, D. (2013). The effect of instrumental timbre on interval discrimination. PLOS ONE, 8(9), e75410.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Wei-K. Liang and Prof. Kevin C. Hsu for their helpful comments and suggestions for this manuscript. We thank Yi-Zhong Huang for assistance in subject recruitment and data collection.

Open practice statements

The data and materials for all experiments are available upon request to the corresponding author. None of the experiments was preregistered.

Funding

This work was supported by the Ministry of Science and Technology in Taiwan [Grant No. MOST109-2410-H-008-024; MOST109-2639-H-008-001-ASP; MOST110-2410-H-008-038-MY2].

Author information

Authors and Affiliations

Authors

Contributions

C.K., C.J., and I.H. designed the experiments. C.K., J.L., and I.H. programmed the auditory stimuli and experimental tasks. C.K. and J.L. conducted the experiments. I.H., C.J., and C.W. performed data analysis. C.K., J.L., and I.H. prepared the figures. All authors contributed to data interpretation and discussion. I.H. wrote the main manuscript text.

Corresponding author

Correspondence to I-Hui Hsieh.

Ethics declarations

Ethics

All experiments were approved by the Research Ethics Committee at National Taiwan University, Taiwan (NTU-REC No.: 202105EM029).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 200 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CY., Liu, JW., Wang, CH. et al. The role of carrier spectral composition in the perception of musical pitch. Atten Percept Psychophys 85, 2083–2099 (2023). https://doi.org/10.3758/s13414-023-02761-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13414-023-02761-x

Keywords

Navigation