Log in

The Autumn-winter Response of Air Temperature to the Blocking Frequency in the Atlantic-Eurasian Sector

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The changes in the response of air temperature to the variations in the instantaneous blocking frequency (IBF) (\(\mathrm{GHGS} > 0\)) between the periods 1979–1999 and 2000–2020 are studied. Blocking patterns, which are the spatial distributions of the coefficients of correlation between the IBF and the 1000 hPa temperature field, are used as the main characteristic. The blocking frequency is calculated in ten longitudinal sectors in the eastern direction from the west of the North Atlantic region to the eastern borders of Siberia and the Pacific Ocean. It is found that blocking patterns moved northward over the Atlantic region (November, December, and February), the Ural region and Siberia (November, January, and February) in 2000–2020. In addition, they were characterized by more pronounced areas of negative correlations over Eurasia and North America as compared to 1979–1999. Along with the pronounced correlation pattern of the Atlantic region, the patterns of the Ural region and Western Siberia (U-WS) proved to be the most significant. It is assumed that the IBF variability over the U-WS sector is an important indicator of the development of the most significant blocking processes over Eurasia in terms of the temperature regime anomalies. The influence of U-WS blockings was the least noticeable in 2000–2020 for December and in 1979–1999 for January, when the response of the temperature field to the blocking changes was similar to the response of the negative phase of the North Atlantic Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. O. Yu. Antokhina, P. N. Antokhin, E. V. Devyatova, and Yu. V. Martynova, "Atmospheric Blockings in Western Siberia. Part 2: The Long-term Variations in the Blocking Frequency and Their Relationship with the Climate Change in Asia," Meteorol. Gidrol., No. 3 (2018) [Russ. Meteorol. Hydrol., No. 3, 43 (2018)].

    Article  Google Scholar 

  2. O. Yu. Antokhina, P. N. Antokhin, O. S. Zorkal’tseva, and E. V. Devyatova, "Atmospheric Blockings in Western Siberia. Part 1: Detection Features, Objective Criteria and Their Comparison," Meteorol. Gidrol., No. 10 (2017) [Russ. Meteorol. Hydrol., No. 10, 42 (2017)].

    Article  Google Scholar 

  3. I. I. Mokhov and V. A. Semenov, "Weather and Climate Anomalies in Russian Regions and Their Relationship to the Global Climate Change," Meteorol. Gidrol., No. 2 (2016) [Russ. Meteorol. Hydrol., No. 2, 41 (2016)].

    Article  Google Scholar 

  4. O. Yu. Antokhina, P. N. Antokhin, E. V. Devyatova, and Yu. V. Martynova, "2004–2016 Wintertime Atmospheric Blocking Events over Western Siberia and Their Effect on Surface Temperature Anomalies," Atmosphere, No. 2, 9 (2018).

    Article  ADS  Google Scholar 

  5. M. P. Baldwin, B. Ayarzaguena, T. Birner, N. Butchart, A. Butler, A. Charlton-Perez, D. Domeisen, C. Garfinkel, H. Garny, E. Gerber, M. Hegglin, U. Langematz, and N. Pedatella, "Sudden Stratospheric Warmings," Rev. Geophys., No. 1, 59 (2021).

    Article  ADS  Google Scholar 

  6. D. Barriopedro, R. Garcia-Herrera, A. Lupo, and E. Hernandez, "A Climatology of Northern Hemisphere Blocking," J. Climate, No. 6, 19 (2006).

    Article  ADS  Google Scholar 

  7. X. Chen, D. Luo, Y. Wu, E. Dunn-Sigouin, and J. Lu, "Nonlinear Response of Atmospheric Blocking to Early Winter Barents-Kara Seas Warming: An Idealized Model Study," J. Climate, 34 (2020).

  8. H. N. Cheung, W. Zhou, H. Mok, M. Wu, and Y. Shao, "Revisiting the Climatology of Atmospheric Blocking in the Northern Hemisphere," Adv. Atmos. Sci., No. 2, 30 (2013).

    Article  ADS  Google Scholar 

  9. D. I. V. Domeisen, C. M. Grams, and L. Papritz, "The Role of North Atlantic-European Weather Regimes in the Surface Impact of Sudden Stratospheric Warming Events," Wea. Climate Dyn., No. 2, 1 (2020).

    Article  ADS  Google Scholar 

  10. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. Hogan, H. Holm, M. Janiskova, S. Keely, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J. Thepaut, "The ERA5 Global Reanalysis," Quart. J. Roy. Meteorol. Soc., No. 730, 146 (2020).

    Article  ADS  Google Scholar 

  11. IPCC. AR6 Climate Change 2021: The Physical Science (IPCC, 2019), https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/.

  12. B.-M. Kim, S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, "Weakening of the Stratospheric Polar Vortex by Arctic Sea-ice Loss," Nature Commun., No. 1, 5 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. H.-J. Kim, S.-W. Son, W. Moon, J.-S. Kug, and J. Hwang, "Subseasonal Relationship between Arctic and Eurasian Surface Air Temperature," Sci. Reports, No. 1, 11 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. W. Kolstad, T. Breiteig, and A. A. Scaife, "The Association between Stratospheric Weak Polar Vortex Events and Cold Air Outbreaks in the Northern Hemisphere," Quart. J. Roy. Meteorol. Soc., No. 649, 136 (2010).

    Article  ADS  Google Scholar 

  15. M. Kretschmer, D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, "More-persistent Weak Stratospheric Polar Vortex States Linked to Cold Extremes," Bull. Amer. Meteorol. Soc., No. 1, 99 (2018).

    Article  ADS  Google Scholar 

  16. H. Lejenas and H. Okland, "Characteristics of Northern Hemisphere Blocking as Determined from a Long Time Series of Observational Data," Tellus A: Dynamic Meteorology and Oceanography, No. 5, 35 (1983).

    Article  ADS  Google Scholar 

  17. Y. Lu, Y. Li, Q. **a, Q. Yang, and C. Wang, "Interdecadal Change of Ural Blocking Highs and Its Atmospheric Cause in Winter during 1979–2018," Atmosphere, No. 9, 13 (2022).

    Article  ADS  CAS  Google Scholar 

  18. D. Luo, X. Chen, A. Dai, and I. Simmonds, "Changes in Atmospheric Blocking Circulations Linked with Winter Arctic Warming: A New Perspective," J. Climate, No. 18, 31 (2018).

    Article  ADS  Google Scholar 

  19. D. Luo, Y. **ao, Y. Yao, A. Dai, I. Simmonds, and C. L. E. Franzke, "Impact of Ural Blocking on Winter Warm Arctic–Cold Eurasian Anomalies. Part I: Blocking-induced Amplification," J. Climate, No. 11, 29 (2016).

    Article  ADS  Google Scholar 

  20. Y. Peings, "Ural Blocking as a Driver of Early-winter Stratospheric Warmings," Geophys. Res. Lett., 2019, No. 10, 46 (2019).

    Article  ADS  Google Scholar 

  21. J. L. Pelly and B. J. Hoskins, "A New Perspective on Blocking," J. Atmos. Sci., No. 5, 60 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. Petoukhov and V. A. Semenov, "A Link between Reduced Barents-Kara Sea Ice and Cold Winter Extremes over Northern Continents," J. Geophys. Res., No. D21, 115 (2010).

  23. M. Previdi, K. L. Smith, and L. M. Polvani, "Arctic Amplification of Climate Change: A Review of Underlying Mechanisms," Environ. Res. Lett., No. 9, 16 (2021).

    Article  ADS  CAS  Google Scholar 

  24. M. Rantanen, A. Karpechko, A. Lipponen, K. Nordling, O. Hyvarinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen, "The Arctic Has Warmed nearly Four Times Faster Than the Globe since 1979," Commun. Earth and Environ., No. 1, 3 (2022).

    Article  ADS  Google Scholar 

  25. E. Tyrlis, J. Bader, E. Manzini, J. Ukita, H. Nakamura, and D. Matei, "On the Role of Ural Blocking in Driving the Warm Arctic–Cold Siberia Pattern," Quart. J. Roy. Meteorol. Soc., No. 730, 146 (2020).

    Article  ADS  Google Scholar 

  26. E. Tyrlis, J. Bader, E. Manzini, J. Ukita, H. Nakamura, and D. Matei, "Ural Blocking Driving Extreme Arctic Sea Ice Loss, Cold Eurasia, and Stratospheric Vortex Weakening in Autumn and Early Winter 2016–2017," J. Geophys. Res. Atmos., No. 21, 124 (2019).

    Article  ADS  Google Scholar 

  27. I. White, C. Garfinkel, E. Gerber, M. Juckler, V. Aquila, and L. Oman, "The Downward Influence of Sudden Stratospheric Warmings: Association with Tropospheric Precursors," J. Climate, No. 1, 32 (2019).

    Article  ADS  PubMed  Google Scholar 

  28. Yu. A. Zyulyaeva and E. A. Zhadin, "Analysis of Three-dimensional Eliassen–Palm Fluxes in the Lower Stratosphere," Russ. Meteorol. Hydrol., No. 8, 34 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Antokhina.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 11, pp. 5-19. https://doi.org/10.52002/0130-2906-2023-11-5-19.

Publisher’s Note. Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antokhina, O.Y., Antokhin, P.N., Zorkal’tseva, O.S. et al. The Autumn-winter Response of Air Temperature to the Blocking Frequency in the Atlantic-Eurasian Sector. Russ. Meteorol. Hydrol. 48, 919–930 (2023). https://doi.org/10.3103/S1068373923110018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923110018

Keywords

Navigation