Log in

Effects of Imidazole Ionic Liquids with Different Chain Lengths on Caking Property of Shenhua Long-Flame Coal

  • MISCELLANEOUS
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

To upgrading the caking property of Shenhua long-flame coal (SH), imidazole ionic liquids (IILs) were used. SH and the treated samples were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy to reveal the upgrading mechanism. The results showed that IILs treatment could improve the caking property of SH. When exploring the effects of IILs with different chain lengths on the caking property of SH, it was found that the caking index of the treated samples first increased and then decreased with increasing chain length, and [C5MIM]Cl treatment exhibited the best modification effect among all IILs used. Additionally, an upgrading mechanism of caking property of SH using IILs is proposed. IILs treatment could increase the content of small aromatics with 3–5 rings and decreased the length of side chain alkanes and oxygen content, which could increase the caking property of SH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Luo, F., Analysis of the current situation and structure of coal resources, China Coal, 2008, no. 3, pp. 91–94.

  2. Xu, R., He, Q., Cai, J., Pan, Yi., Shen, J., and Hu, B., Effects of chemicals and blending petroleum coke on the properties of low-rank Indonesian coal water mixtures, Fuel Process. Technol., 2008, vol. 89, no. 3, pp. 249–253. https://doi.org/10.1016/j.fuproc.2007.11.026

    Article  CAS  Google Scholar 

  3. Nomura, S. and Arima, T., Influence of binder (coal tar and pitch) addition on coal caking property and coke strength, Fuel Process. Technol., 2017, vol. 159, pp. 369–375. https://doi.org/10.1016/j.fuproc.2017.01.024

    Article  CAS  Google Scholar 

  4. Krzesińska, M., Szeluga, U., Czajkowska, S., Muszyński, J., Zachariasz, J., Pusz, S., Kwiecińska, B., Koszorek, A., and Pilawa, B., The thermal decomposition studies of three Polish bituminous coking coals and their blends, Int. J. Coal Geol., 2009, vol. 77, nos. 3–4, pp. 350–355. https://doi.org/10.1016/j.coal.2008.02.001

    Article  CAS  Google Scholar 

  5. Nishioka, M. and Larsen, J.W., Mild pyrolytic production of low-molecular-weight compounds from high-molecular-weight coal extracts, Energy Fuels, 1988, vol. 2, no. 3, pp. 351–355. https://doi.org/10.1021/ef00009a022

    Article  CAS  Google Scholar 

  6. Fernández, A.M., Barriocanal, C., Díez, M.A., and Alvarez, R., Influence of additives of various origins on thermoplastic properties of coal, Fuel, 2009, vol. 88, no. 12, pp. 2365–2372. https://doi.org/10.1016/j.fuel.2008.11.029

    Article  CAS  Google Scholar 

  7. Diez, M.A., Alvarez, R., Melendi, S., and Barriocanal, C., Feedstock recycling of plastic wastes/oil mixtures in cokemaking, Fuel, 2009, vol. 88, no. 10, pp. 1937–1944. https://doi.org/10.1016/j.fuel.2009.03.035

    Article  CAS  Google Scholar 

  8. Sarkar, N.B., Sarkar, P., and Choudhury, A., Effect of hydrothermal treatment of coal on the oxidation susceptibility and electrical resistivity of HTT coke, Fuel Process. Technol., 2005, vol. 86, no. 5, pp. 487–497. https://doi.org/10.1016/j.fuproc.2004.03.008

    Article  CAS  Google Scholar 

  9. Shui, H., Lin, C., Zhang, M., Wang, Z., and Zheng, M., Comparison of the associative structure of two different types of rich coals and their coking properties, Fuel, 2010, vol. 89, no. 7, pp. 1647–1653. https://doi.org/10.1016/j.fuel.2009.08.011

    Article  CAS  Google Scholar 

  10. Freudenmann, D., Wolf, S., Wolff, M., and Feldmann, C., Ionic liquids: New perspectives for inorganic synthesis?, Angew. Chem., 2011, vol. 50, no. 47, pp. 11050–11060. https://doi.org/10.1002/anie.201100904

    Article  CAS  Google Scholar 

  11. Clark, J.H., Green chemistry: challenges and opportunities, Green Chem., 1999, vol. 1, no. 1, pp. 1–8. https://doi.org/10.1039/a807961g

    Article  CAS  Google Scholar 

  12. Wang, L., Green solvent-synthesis of ionic liquids, Guangdong Chem. Ind., 2012, vol. 39, no. 3, p. 76.

    Google Scholar 

  13. Chowdhury, S., Mohan, R.S., and Scott, J.L., Reactivity of ionic liquids, Tetrahedron, 2007, vol. 63, no. 11, pp. 2363–2389. https://doi.org/10.1016/j.tet.2006.11.001

    Article  CAS  Google Scholar 

  14. Painter, P., Pulati, N., Cetiner, R., Sobkowiak, M., Mitchell, G., and Mathews, J., Dissolution and dispersion of coal in ionic liquids, Energy Fuels, 2010, vol. 24, no. 3, pp. 1848–1853. https://doi.org/10.1021/ef9013955

    Article  CAS  Google Scholar 

  15. Cummings, J., Shah, K., Atkin, R., and Moghtaderi, B., Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction, Fuel, 2015, vol. 143, pp. 244–252. https://doi.org/10.1016/j.fuel.2014.11.042

    Article  CAS  Google Scholar 

  16. Wang, L.-Yu., Xu, Yo.-L., Jiang, Sh.-G., Yu, M.-G., Chu, T.-X., Zhang, W.-Q., Wu, Zh.-Ya., and Kou, L.-W., Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal, Saf. Sci., 2012, vol. 50, no. 7, pp. 1528–1534. https://doi.org/10.1016/j.ssci.2012.03.006

    Article  Google Scholar 

  17. Liu, S., Zhou, W., Tang, F., Guo, B., Zhang, Yu., and Yin, R., Pretreatment of coal by ionic liquids towards coal electrolysis liquefaction, Fuel, 2015, vol. 160, pp. 495–501. https://doi.org/10.1016/j.fuel.2015.08.005

    Article  CAS  Google Scholar 

  18. Hu, C., Jiang, S., Wu, Z., and Miao, M., Influence of ionic liquids on the species and content of coal functional group, Electron. J. Geotech. Eng., 2014, vol. 19, pp. 1365–1375.

    Google Scholar 

  19. Sonibare, O.O., Haeger, T.T., and Foley, S.F., Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy, Energy, 2010, vol. 35, no. 12, pp. 5347–5353. https://doi.org/10.1016/j.energy.2010.07.025

    Article  CAS  Google Scholar 

  20. Liu, X., Li, G., Zhao, H., Ye, Yo., **e, R., Zhao, Z., Lei, Z., and Cui, P., Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process, Fuel, 2022, vol. 321, p. 124023. https://doi.org/10.1016/j.fuel.2022.124023

    Article  CAS  Google Scholar 

  21. Song, C., Liu, X., and Zhao, S., Flame retardancy of **njiang lignite by anions in imidazole based ionic liquids,, 2020, vol. 45, no. 1, pp. 470–480.

  22. Noble, R.D. and Gin, D.L., Perspective on ionic liquids and ionic liquid membranes, J. Membrane Sci., 2011, vol. 369, nos. 1–2, pp. 1–4. https://doi.org/10.1016/j.memsci.2010.11.075

    Article  CAS  Google Scholar 

  23. Chen, X., Gao, J., Deng, C., Ge, S., Fan, C., and Zhang, W., Experimental study on chemical structure and wetting influence of imidazole ionic liquids on coal, Fuel, 2022, vol. 330, p. 125545. https://doi.org/10.1016/j.fuel.2022.125545

    Article  CAS  Google Scholar 

  24. Chen, C., Tang, Yu., and Guo, X., Comparison of structural characteristics of high-organic-sulfur and low-organic-sulfur coal of various ranks based on FTIR and Raman spectroscopy, Fuel, 2022, vol. 310, p. 122362. https://doi.org/10.1016/j.fuel.2021.122362

    Article  CAS  Google Scholar 

  25. Li, Z., Ni, G., Wang, H., Sun, Q., Wang, G., Jiang, B., and Zhang, C., Molecular structure characterization of lignite treated with ionic liquid via FT-IR and XRD spectroscopy, Fuel, 2020, vol. 272, p. 117705. https://doi.org/10.1016/j.fuel.2020.117705

    Article  CAS  Google Scholar 

  26. Li, S., Ni, G., Nie, B., Lu, S., Li, X., and Wang, G., Microstructure characteristics of lignite under the synergistic effect of oxidizing acid and ionic liquid [Bmim][Cl], Fuel, 2021, vol. 289, p. 119940. https://doi.org/10.1016/j.fuel.2020.119940

    Article  CAS  Google Scholar 

  27. Li, H., Cao, D., and Zhang, W., Characterization of the graphitization trajectory stages of high grade coal by XRD and Raman spectroscopy, Spectrosc. Spect. Anal., 2021, vol. 41, no. 8, pp. 2491–2498.

    CAS  Google Scholar 

  28. Guo, S., Geng, W., Yuan, S., Yi, C., Dong, Z., and Xu, J., Understanding the molecular structure of Datong coal by combining experimental and computational study, J. Mol. Struct., 2023, vol. 1279, p. 135035. https://doi.org/10.1016/j.molstruc.2023.135035

    Article  CAS  Google Scholar 

  29. Liu, X., Song, H., Han, K., Hu, J., Zhao, Z., and Cui, P., Insight into low-temperature co-pyrolysis of Qinglongshan lean coal with organic matter in Huadian oil shale, Energy, 2023, vol. 285, p. 128678. https://doi.org/10.1016/j.energy.2023.128678

    Article  CAS  Google Scholar 

  30. Lu, J., Wang, X., Li, H., Shi, S., Yang, W., Lu, Yi., Shao, S., and Ye, Q., Molecular insights into the methane adsorption capacity of coal under microwave irradiation based on solid-state 13C-NMR and XPS, Fuel, 2023, vol. 339, p. 127484. https://doi.org/10.1016/j.fuel.2023.127484

    Article  CAS  Google Scholar 

  31. Xu, J., Tang, H., Su, S., Liu, J., Han, H., Zhang, L., Xu, K., Wang, Yi., Hu, S., Zhou, Yi., and **ang, J., Micro-Raman spectroscopy study of 32 kinds of Chinese coals: Second-order Raman spectrum and its correlations with coal properties, Energy Fuels, 2017, vol. 31, no. 8, pp. 7884–7893. https://doi.org/10.1021/acs.energyfuels.7b00990

    Article  CAS  Google Scholar 

  32. Xu, Ya., Chen, X., Wang, L., Bei, K., Wang, J., Chou, I., and Pan, Z., Progress of Raman spectroscopic investigations on the structure and properties of coal, J. Raman Spectrosc., 2020, vol. 51, no. 9, pp. 1874–1884. https://doi.org/10.1002/jrs.5826

    Article  ADS  CAS  Google Scholar 

  33. He, Q., Jiang, X., Xu, J., Wang, C., Jiang, M., Wang, G., Jiang, L., Xu, K., Wang, Yi., Su, S., Hu, S., and ** technique, Powder Technol., 2023, vol. 420, p. 118385. https://doi.org/10.1016/j.powtec.2023.118385

    Article  CAS  Google Scholar 

  34. Zhang, N., Wang, G., Zhang, J., Ning, X., Li, Ya., Liang, W., and Wang, C., Study on co-combustion characteristics of hydrochar and anthracite coal, J. Energy Inst., 2020, vol. 93, no. 3, pp. 1125–1137. https://doi.org/10.1016/j.joei.2019.10.006

    Article  CAS  Google Scholar 

  35. Li, X., Hayashi, J., and Li, C., FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal, Fuel, 2006, vol. 85, nos. 12–13, pp. 1700–1707. https://doi.org/10.1016/j.fuel.2006.03.008

    Article  CAS  Google Scholar 

  36. Liu, X., Li, G., Zhao, H., Cheng, F., **e, R., Zhao, Z., and Cui, P., Upgrading deashed Huadian oil shale using low-temperature pyrolysis treatment and its application in coal-blending coking, Fuel Process. Technol., 2021, vol. 223, p. 106994. https://doi.org/10.1016/j.fuproc.2021.106994

    Article  CAS  Google Scholar 

  37. Liu, X., You, J., Wang, Yu., Lu, L., **e, Yi., Yu, I., and Fu, Q., Raman spectroscopic study on the pyrolysis of Australian bituminous coal, J. Fuel Chem. Technol., 2014, vol. 42, no. 3, pp. 270–276. https://doi.org/10.1016/s1872-5813(14)60019-0

    Article  CAS  Google Scholar 

  38. Liu, L., Du, M., Li, G., Schobert, H.H., Fan, J., Liu, J., and Wang, Q., Structure and evolution features of cutinite with different coal rank from stacking and arrangement of aromatic fringes in HRTEM, Fuel, 2022, vol. 326, p. 124998. https://doi.org/10.1016/j.fuel.2022.124998

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 22308006 and 22278001), the Natural Science Foundation of Anhui Provincial Education Department (no. KJ2021A0407), the Natural Science Foundation of Anhui Province (grant no. 2008085QB87), and Anhui Provincial Postdoctoral Science Foundation (no. 2021B538).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **angchun Liu or ** Cui.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangshun Han, Fang, Y., Chen, Y. et al. Effects of Imidazole Ionic Liquids with Different Chain Lengths on Caking Property of Shenhua Long-Flame Coal. Coke Chem. 66, 544–553 (2023). https://doi.org/10.3103/S1068364X23701235

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23701235

Keywords:

Navigation