Log in

The Influence of the Mode Intensity Profile on the Population Kinetics of Terbium Ion Levels and the Excitation of Luminescence in a Few-Mode Chalcogenide Fiber

  • FIBER WAVEGUIDES
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Based on the concepts of the wave theory of optical fibers, the excitation of luminescence in a few-mode fiber made of chalcogenide glass doped with terbium ions is considered. According to the wave theory, radiation propagating in a fiber is a set of modes, each having its own intensity profile in the cross section of the fiber. A simplified theoretical model is developed, which differs from the generally accepted phenomenological model in that the radiation intensity in the cross section of the fiber is assumed not to be constant, but to depend on the radial coordinate in accordance with the intensity profile of the given mode. By solving the model problem of population kinetics of terbium ion energy levels in the Ga5Ge20Sb10Se65 glass upon absorption of pump radiation with a given intensity profile, it was established that the rate of population change and the time of formation of population inversion depend on the radial coordinate. It is shown that, due to the radial dependence of the levels populations, the intensity profiles of modes propagating in the fiber at the pump and luminescence wavelengths are distorted. The radiation losses arising from the rearrangement of mode profiles and the applicability of the generally accepted phenomenological model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Boussard-Pledel, C., in Chalcogenide Glasses: Preparation, Properties and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 2014, vol. 44, p. 381.

  2. Guo, H., Cui, J., Xu, C., Xu, Y., and Farrell, G., in Mid-Infrared Fluoride and Chalcogenide Glasses and Fibers, Progress in Optical Science and Photonics, 2022, vol. 18, p. 217.

    Article  Google Scholar 

  3. Heo, J., Rodrigues, M., Saggese, S.J., and Sigel, G.H., J. Appl. Opt., 1991, vol. 30, p. 3944.

    Article  CAS  ADS  Google Scholar 

  4. Sanghera, J.S., Kung, F.H., Pureza, P.C., et al., J. Appl. Opt., 1994, vol. 33, p. 6315.

    Article  CAS  ADS  Google Scholar 

  5. Seddon, A.B., Tang, Z., Furniss, D., et al., Opt. Express, 2010, vol. 18, p. 26704.

    Article  PubMed  ADS  Google Scholar 

  6. Jackson, S.D. and Jain, R.K., Opt. Express, 2020, vol. 28, p. 30964.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Shaw, L.B., Cole, B., Thielen, P.A., Sanghera, J.S., and Aggarwal, I.D., IEEE J. Quantum Electron., 2001, vol. 48, p. 1127.

    Article  ADS  Google Scholar 

  8. Sojka, L., Tang, Z., Jayasuriya, D., Shen, M., et al., Appl. Sci., 2020, vol. 10, p. 539.

    Article  CAS  Google Scholar 

  9. Nazabal, V. and Adam, J.-L., Opt. Mater.: X, 2022, vol. 15, p. 100168.

  10. Shiryaev, V.S., Karaksina, E.V., Kotereva, T.V., Snopatin, G.E., Velmuzhov, A.P., et al., J. Non-Cryst. Solids, 2020, vol. 537, p. 120026.

  11. Karaksina, E.V., Kotereva, T.V., and Shiryaev, V.S., J. Lumin., 2018, vol. 204, p. 154.

    Article  CAS  Google Scholar 

  12. Karaksina, E.V., Shiryaev, V.S., Anashkina, E.A., Kotereva, T.V., Churbanov, M.F., and Snopatin, G.E., Opt. Mater., 2017, vol. 72, p. 654.

    Article  CAS  ADS  Google Scholar 

  13. Churbanov, M.F., Denker, B.I., et al., J. Lumin., 2022, vol. 245, p. 118756.

  14. Shiryaev, V.S., Karaksina, E.V., et al., J. Lumin., 2017, vol. 183, p. 129.

    Article  CAS  Google Scholar 

  15. Velmuzhov, A.P., Sukhanov, M.V., Plotnichenko, V.G., Plekhovich, A.D., Shiryaev, V.S., and Churbanov, M.F., J. Non-Cryst. Solids, 2019, vol. 525, p. 119669.

  16. Sukhanov, M.V., Velmuzhov, A.P., Otopkova, P.A., Ketkova, L.A., Evdokimov, I.I., Kurganova, A.E., Plotnichenko, V.G., and Shiryaev, V.S., J. Non-Cryst. Solids, 2022, vol. 593, p. 121793.

  17. Sukhanov, M.V., Velmuzhov, A.P., Ketkova, L.A., Otopkova, P.A., Evdokimov, I.I., Kurganova, A.E., Shiryaev, V.S., Denker, B.I., Galagan, B.I., Koltashev, V.V., Plotnichenko, V.G., and Sverchkov, S.E., J. Non-Cryst. Solids, 2023, vol. 608, p. 122256.

  18. Starecki, F., Charpentier, F., Doualan, J.L., Quetel, L., Michel, K., and Chahal, R., Sens. Actuators B, 2015, vol. 207, p. 518.

    Article  CAS  Google Scholar 

  19. Pele, A.L., Braud, A., Doualan, J.L., Starecki, F., Nazabal, V., Chahal, R., Boussard-Plédel, C., Bureau, B., et al., Opt. Mater., 2016, vol. 61, p. 37.

    Article  CAS  ADS  Google Scholar 

  20. Velmuzhov, A.P., Sukhanov, M.V., Kotereva, T.V., Zernova, N.S., Shiryaev, V.S., et al., J. Non-Crystal. Solids, 2019, vol. 517, p. 70.

    Article  CAS  ADS  Google Scholar 

  21. Churbanov, M.F., Denker, B.I., Galagan, B.I., Koltashev, V.V., Plotnichenko, V.G., Sukhanov, M.V., et al., Appl. Phys. B, 2020, vol. 126, p. 117.

    Article  CAS  ADS  Google Scholar 

  22. Shiryaev, V.S., Sukhanov, M.V., Velmuzhov, A.P., Karaksina, E.V., Kotereva, T.V., Snopatin, G.E., Denker, B.I., Galagan, B.I., Sverchkov, S.E., et al., J. Non-Cryst. Solids, 2021, vol. 567, p. 120939.

  23. Koltashev, V.V., Denker, B.I., Galagan, B.I., Snopatin, G.E., Sukhanov, M.V., et al., Opt. Laser Technol., 2023, vol. 161, p. 109233.

  24. Sujecki, S., Sojka, L., Pawlik, E., Anders, K., Piramidowicz, R., Tang, Z., Furniss, D., Barney, E., Benson, T., and Seddon, A., J. Lumin., 2018, vol. 199, p. 112.

    Article  CAS  Google Scholar 

  25. Starecki, F., Abdellaoui, N., Braud, A., Doualan, J.-L., Boussard-Plédel, C., Bureau, B., Camy, P., and Nazabal, V., Opt. Lett., 2018, vol. 43, p. 1211.

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Abdellaoui, N., Starecki, F., Boussard-Pledel, C., Shpotyuk, Y., Doualan, J-L., Braud, A., Baudet, E., Nemec, P., Chevire, F., Dussauze, M., Bureau, B., Camy, P., and Nazabal, V., Opt. Mater. Express, 2018, vol. 8, p. 2887.

    Article  CAS  ADS  Google Scholar 

  27. Sujecki, S., Sojka, L., Beres-Pawlik, E., Anders, K., Piramidowicz, R., Tang, Z., Furniss, D., Barney, E., et al., J. Lumin., 2019, vol. 209, p. 14.

    Article  CAS  Google Scholar 

  28. Dong, L. and Samson, B., Fiber Lasers: Basics, Technology, and Applications, CRC Press, 2016.

    Book  Google Scholar 

  29. Anashkina, E.A., IEEE Photon. Technol. Lett., 2018, vol. 30, p. 1190.

    Article  CAS  ADS  Google Scholar 

  30. Sójka, L.,Tang, Z., Zhu, H., et al., Opt. Mater. Express, 2012, vol. 2, p. 1632.

    Article  ADS  Google Scholar 

  31. Bogatov, A.P., Quantum Electron., 2017, vol. 47, p. 313.

    Article  CAS  ADS  Google Scholar 

  32. Masalov, A.V. and Minogin, V.G., J. Exp. Theor. Phys., 2014, vol. 118, p. 714.

    Article  CAS  ADS  Google Scholar 

  33. Le Kien, F., Hejazi, S., Busch, T., et al., Proc. 2018 Conf. on Lasers and Electro-Optics (CLEO), San Jose, US, 2018.

  34. Snyder, A. and Love, J., Optical Waveguide Theory, New York: Springer, 1983.

    Google Scholar 

  35. Sójka, L., Tang, Z., Furniss, D., Sakr, H., Fang, Y., Beres’-Pawlik, E., Benson, T.M., Seddon, A.B., and Sujecki, S., J. Opt. Soc. Am. B, 2017, vol. 34, p. 70.

    Article  ADS  Google Scholar 

  36. Sujecki, S., Sojka, L., Tang, Z., Jayasuriya, D., Furniss, D., Barney, E., Benson, T., and Seddon, A., J. Rare Earths, 2019, vol. 37, p. 1157.

    Article  CAS  Google Scholar 

  37. Ma, C., Guo, H., Xu, Y., Wu, Z., Mingming Li, M., Jia, X., and Nie, Q., J. Am. Ceram. Soc., 2019, vol. 102, p. 6794.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-13-00194).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Romanova or V. S. Shiryaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Derbov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, E.A., Parshina, N.D. & Shiryaev, V.S. The Influence of the Mode Intensity Profile on the Population Kinetics of Terbium Ion Levels and the Excitation of Luminescence in a Few-Mode Chalcogenide Fiber. Bull. Lebedev Phys. Inst. 50 (Suppl 11), S1225–S1239 (2023). https://doi.org/10.3103/S1068335623602017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623602017

Keywords:

Navigation