Log in

Nonlinear Attenuation of Laser Radiation by Colloidal Products of Aluminum Target Ablation in Dimethyl Sulfoxide

  • EFFECT OF LASER RADIATION ON MATERIALS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The mechanisms of nonlinear attenuation of nanosecond laser radiation by metal nanoparticles have been investigated. A nanoscale colloidal system was obtained as a result of the ablation of an aluminum target in dimethyl sulfoxide and investigated by the methods of UV and visible light spectroscopy, dynamic light scattering, and transmission electron microscopy. The average diameter of aluminum nanoparticles is found to be 47 nm. The system is partially aggregated and contains impurities of carbon origin, which are due to the dimethyl sulfoxide decomposition. A possibility of reducing the transmittance at a wavelength of 532 nm by a factor of 5 with an increase in the pulse energy density from 22 mJ/cm2 to 2.9 J/cm2 was shown using the z-scan method. The optoacoustic signals are measured, and a sublinear dependence of their amplitude on the pulse energy is found. Peak pressures are estimated to be 1.6 MPa at the energy density of 3.26 J/cm2 for the colloidal products of aluminum ablation. Based on the sublinear dependence of the acoustic signal amplitude on the pulse energy and pressure, it is concluded that the evaporation processes dominate in the observed effects. An approximate model is proposed, and the peak temperatures of aluminum nanoparticles are estimated to be 3670–4090 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zhang, Y. and Wang, Y., Nonlinear optical properties of metal nanoparticles: A review, RSC Adv., 2017, vol. 7, no. 7, p. 45129–45144. https://doi.org/10.1039/C7RA07551K

  2. Ganeev, R.A., Characterization of the optical nonlinearities of silver and gold nanoparticles, Opt. Spectrosc., 2019, vol. 127, p. 487–507. https://doi.org/10.1134/S0030400X19090108

    Article  ADS  Google Scholar 

  3. Zarate-Reyes, J.M., Sanchez-Dena, O., Flores-Romero, E., Peralta-Angeles, J.A., Reyes-Esqueda, J.A., and Cheang-Wong, J.C., Third-order nonlinear optical response of ion-implanted embedded arrays of plasmonic gold nanoparticles Opt. Mater., 2021, vol. 111, p. 110616. https://doi.org/10.1016/j.optmat.2020.110616

  4. Qu, Sh., Song, Y., Liu, H., Wang, Y., Gao, Y., Liu, Sh., Zhang, X., Li, Y., and Zhu, D., A theoretical and experimental study on optical limiting in platinum nanoparticles, Opt. Commun., 2002, vol. 203, no. 3–6, pp. 283–288. https://doi.org/10.1016/j.optmat.2020.110616

  5. Kiran, P.P., Shivakiran Bhaktha, B.N., Narayana Rao, D., Goutam, De, Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–CuAg–Cu nanoclusters co-doped in SiO2SiO2 Sol-Gel films, J. Appl. Phys., 2004, vol. 96, pp. 6717–6723. https://doi.org/10.1063/1.1804228

    Article  ADS  Google Scholar 

  6. Sivan, Y. and Chu, S.-W., Nonlinear plasmonics at high temperatures, Nanophotonics, 2017, vol. 6, pp. 317–328. https://doi.org/10.1515/nanoph-2016-0113

    Article  Google Scholar 

  7. Un, I.W. and Sivan, Y., Thermo-optic nonlinearity of single metal nanoparticles under intense continuous wave illumination, Phys. Rev. Materials, 2020, vol. 4, no. 10, p. 105201. https://doi.org/10.1103/PhysRevMaterials.4.105201

  8. Kalenskii, A.V., Zvekov, A.A., and Nikitin, A.P., Influence of temperature on optical properties of silver nanoparticle–transparent matrix composites, J. Appl. Spectrosc., 2017, vol. 83, pp. 1020–1025. https://doi.org/10.1007/s10812-017-0400-z

    Article  ADS  Google Scholar 

  9. Zverev, A.S., Kalenskii, A.V., Ovchinnikov, G.E., Zvekov, A.A., and Galkina, E.V., Nonlinear absorption of laser radiation by aluminium particles in a potassium bromide matrix Quantum Electron., 2021, vol. 51, p. 712. https://doi.org/10.1070/QEL17597

    Article  ADS  Google Scholar 

  10. Amendola, V., Polizzi, S., and Meneghetti, M., Laser ablation synthesis of gold nanoparticles in organic solvents, J. Phys. Chem. B, 2006, vol. 110, no. 14, pp. 7232–7237. https://doi.org/10.1021/jp0605092

    Article  Google Scholar 

  11. Amendola, V., Polizzi, S., Meneghetti, M., Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization, Langmuir, 2007, vol. 23, no. 12, pp. 6766–6770. https://doi.org/10.1021/la0637061

    Article  Google Scholar 

  12. Bozon-Verduraz, F., Brayner, R., Voronov, V.V., Kirichenko, N.A., Simakin, A.V., and Shafeev, G.A., Production of nanoparticles by laser-induced ablation of metals in liquids, Quantum Electron., 2003, vol. 33, no. 8, p. 714. https://doi.org/10.1070/QE2003v033n08ABEH002484

    Article  ADS  Google Scholar 

  13. Podagatlapalli, G.K., Hamad, S., Sreedhar, S., Tewari, S.P., and Rao, S.V., Fabrication and characterization of aluminum nanostructures and nanoparticles obtained using femtosecond ablation technique, Chem. Phys. Lett., 2012, vol. 530, pp. 93–97. https://doi.org/10.1016/j.cplett.2012.01.081

    Article  ADS  Google Scholar 

  14. Aduev, B.P., Nurmukhametov, D.R., Zvekov, A.A., Kalenskii, A.V., and Liskov, I.Yu., Absorption of pulsed laser radiation by composites based on hexogen and aluminium nanoparticles, Quantum Electron., 2019, vol. 49, no. 2, p. 141. https://doi.org/10.1070/QEL16808

  15. Aduev, B.P., Nurmukhametov, D.R., Zvekov, A.A., Nelyubina, N.V., Sozinov, S.A., Kalenskii, A.V., Anan’eva, M.V., and Galkina, E.V., An optoacoustic study and simulation of the optical properties of cyclotrimethylenetrinitramine–ultrafine nickel particle composites, Opt. Spectrosc., 2020, vol. 128, pp. 664–673. https://doi.org/10.1134/S0030400X20050021

    Article  ADS  Google Scholar 

  16. Bialkowski, S.E., Astrath, N.G.C., and Proskurnin, M.A., Photothermal Spectroscopy Methods, Hoboken, N.J.: Wiley, 2019.

    Book  Google Scholar 

  17. Khademian, M., Zandi, M., Amirhoseiny, M., and Dorranian, D., Synthesis of CuS nanoparticles by laser ablation method in DMSO media, J. Clust. Sci., 2017, vol. 28, pp. 2753–2764. https://doi.org/10.1007/s10876-017-1257-2

    Article  Google Scholar 

  18. http://database.iem.ac.ru/mincryst/rus/index.php.

  19. Shiju, E., Siji Narendran, N.K., Narayana, Rao D., and Chandrasekharan, K., Enhanced nonlinear absorption and efficient power limiting action of Au/Ag graphite core-shell nanostructure synthesized by laser ablation, Nano Express, 2020, vol. 1, no. 3, p. 030026. https://doi.org/10.1088/2632-959X/abca0f

  20. Palik, E., Ed., Handbook of Optical Constants of Solids, San Diego: Academic, 1998, vol. 1.

    Google Scholar 

  21. Gusev, V.E. and Karabutov, A.A., Lazernaya optoakustika (Laser Optoacoustics), Moscow: Nauka, 1991.

  22. Suslick, K.S., Kirk-Othmer Encyclopedia for Chemical Technology, New York: Wiley, 1991.

    Google Scholar 

  23. Anan’eva, M.V., Zvekov, A.A., Kalenskii, A.V., and Aduev, B.P., Method of modeling optoacoustic signals in composites transparent matrix – metal nanoparticles, Russ. Phys. J., 2019, vol. 62, pp. 156–166.

    Article  Google Scholar 

  24. Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media, Oxford: Pergamon, 1960.

    MATH  Google Scholar 

  25. Barmina, E.V., Gudkov, S.V., Simakin, A.V., and Shafeev, G.A., Stable products of laser-induced breakdown of aqueous colloidal solutions of nanoparticles, J. Laser Micro/Nanoeng., 2017, vol. 12, p. 254.

    Google Scholar 

  26. Huang, H., and Zhigilei, L.V., Atomistic view of laser fragmentation of gold nanoparticles in a liquid environment, J. Phys. Chem. C, 2021, vol. 125, no. 24, pp. 13413–13432. https://doi.org/10.1021/acs.jpcc.1c03146

    Article  Google Scholar 

  27. Persad, A.H. and Ward, Ch.A., Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation, Chem. Rev., 2016, vol. 116, no.14, pp. 7727–7767. https://doi.org/10.1021/acs.chemrev.5b00511

    Article  Google Scholar 

  28. Kikoin, I.K., Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities: Handbook), Moscow: Atomizdat, 1975.

  29. Mozurkewich, M., Aerosol growth and the condensation coefficient for water: A review, Aerosol Sci. Technol., 1986, vol. 5, no. 2, pp. 223–236. https://doi.org/10.1080/02786828608959089

    Article  ADS  Google Scholar 

  30. Kalenskii, A.V., Gazenaur, N.V., Zvekov, A.A., and Nikitin, A.P., Critical conditions of reaction initiation in the PETN during laser heating of light-absorbing nanoparticles, Combustion, Explosion, and Shock Waves, 2017, vol. 53, no. 2, pp. 219–228. https://doi.org/10.1134/S0010508217020137

    Article  Google Scholar 

  31. Aden, A.L. and Kerker, M., Scattering of electromagnetic waves from two concentric spheres, J. Appl. Phys., 1951, vol. 22, pp. 1242–1246. https://doi.org/10.1063/1.1699834

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kalenskii, A.V., Zvekov, A.A., and Aduev, B.P., The influence of temperature on the spectral dependences of aluminum’s optical properties, Opt. Spectrosc., 2018, vol. 124, pp. 501–508. https://doi.org/10.1134/S0030400X18040094

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by a grant of the President of the Russian Federation (project no. MD-3502.2021.1.2) and by the Russian Foundation for Basic Research (grant no. 19-33-60013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zverev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverev, A.S., Nurmukhametov, D.R., Russakov, D.M. et al. Nonlinear Attenuation of Laser Radiation by Colloidal Products of Aluminum Target Ablation in Dimethyl Sulfoxide. Bull. Lebedev Phys. Inst. 50 (Suppl 1), S42–S53 (2023). https://doi.org/10.3103/S1068335623130158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623130158

Keywords:

Navigation