Log in

Interface Design Development for Growing Short-Period InAs/GaSb Superlattices by Molecular-Beam Epitaxy

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The problems of growing short-period InAs/GaSb superlattices on GaSb (100) substrates by molecular-beam epitaxy are studied. For InAs/GaSb epitaxial heterostructures, a method for forming “InSb-like” atomically smooth interfaces with an ultrathin intermediate In(As)Sb layer is developed. This technique allowed growth of a short-period superlattice containing 50 InAs/GaSb periods. In situ growth control using high-energy electron diffraction and post-growth studies of the superlattice using atomic-force microscopy and X-ray diffraction confirm the efficiency of the technique for fabricating detector structures based on type-II superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. **e, L., Wang, G., and Sun, Q., Advances and trends of type-II superlattice infrared detectors, Proc. SPIE, AOPC 2020: Infrared Device and Infrared Technology, 2020, vol. 11563, pp. 121–126. https://doi.org/10.1117/12.2579865

  2. Sai-Halasz, G.A., Tsu, R., and Esaki, L., A new semiconductor superlattice, Appl. Phys. Lett., 1977, vol. 30, no. 12, pp. 651–653. https://doi.org/10.1063/1.89273

    Article  ADS  Google Scholar 

  3. Rogalski, A., History of infrared detectors, Opto-Electron. Rev., 2012, vol. 20, no. 3, pp. 279–308. https://doi.org/10.2478/s11772-012-0037-7

    Article  ADS  Google Scholar 

  4. Ting, D.Z-Y., Soibel, A., Hӧglund, L., Nguyen, J., Hill, C.J., Khoshakhlagh, A., and Gunapala, S.D., Chapter 1—Type-II Superlattice Infrared Detectors, Semiconductors and Semimetals, 2011, vol. 84, pp. 1–57. https://doi.org/10.1016/B978-0-12-381337-4.00001-2

    Article  Google Scholar 

  5. Grein, C.H., Cruz, H., Flatte, M.E., and Ehrenreich, H., Theoretical performance of very long wavelength InAs/InxGa1−xSb superlattice based infrared detectors, Appl. Phys. Lett., 1994, vol. 65, no. 20, pp. 2530–2532. https://doi.org/10.1063/1.112626

    Article  ADS  Google Scholar 

  6. Rogalski, A., Antoszewski, J., and Faraone, L., Third-generation infrared photodetector arrays, J. Appl. Phys., 2009, vol. 105, no. 9, p. 4. https://doi.org/10.1063/1.3099572

    Article  Google Scholar 

  7. Rogalski, A., Recent progress in infrared detector technologies, Infrared Phys. Technol., 2011, vol. 54, no. 3, pp. 136–154. https://doi.org/10.1016/j.infrared.2010.12.003

    Article  ADS  Google Scholar 

  8. Kinch, M.A., Fundamentals of infrared detector materials, Bellingham: SPIE Press, 2007, vol. 76.

    Book  Google Scholar 

  9. Litvinov, D.A., Pashkeev, D.A., Grigoreva, L.N., Kolosov, S.A., and Aminev, D.F., Study of single-electron spectrum of GaAs/AlGaAs heterostructure for mid-IR photodetectors via low-temperature luminescence, Bull. Lebedev Phys. Inst., 2020, vol. 47, pp. 105—109. https://doi.org/10.3103/S1068335620040041

    Article  ADS  Google Scholar 

  10. Katayama, H., Takekawa, T., Kimata, M., Inada, H., and Iguchi, Y., Measurement of absorption and external quantum efficiency of an InAs/GaSb Type II superlattice, Infrared Phys. Technol., 2015, vol. 70, pp. 53–57. https://doi.org/10.1016/j.infrared.2014.10.014

    Article  ADS  Google Scholar 

  11. Li, X., Jiang, D., Zhang, Y., and Zhao, L., Interface optimization and fabrication of InAs/GaSb type II superlattice for very long wavelength infrared photodetectors, Superlat. Microstruct., 2016, vol. 91, pp. 238–243. https://doi.org/10.1016/j.spmi.2016.01.013

    Article  ADS  Google Scholar 

  12. Wu, D., Li, J., Dehzangi, A., and Razeghi, M., High performance InAs/InAsSb Type-II superlattice mid-wavelength infrared photodetectors with double barrier, Infrared Phys. Technol., 2020, vol. 109, p. 103439. https://doi.org/10.1016/j.infrared.2020.103439

  13. Satpati, B., Rodriguez, J.B., Trampert, A., Tournié, E., Joullié, A., and Christol, P., Interface analysis of InAs/GaSb superlattice grown by MBE, J. Cryst. Growth, 2007, vol. 301, pp. 889–892. https://doi.org/10.1016/j.jcrysgro.2006.11.284

    Article  ADS  Google Scholar 

  14. Klin, O., Snapi, N., Cohen, Y., and Weiss, E., A study of MBE growth-related defects in InAs/GaSb type-II supperlattices for long wavelength infrared detectors, J. Cryst. Growth, 2015, vol. 425, pp. 54–59. https://doi.org/10.1016/j.jcrysgro.2015.03.038

    Article  ADS  Google Scholar 

  15. Youngdale, E.R., Meyer, J.R., Hoffman, C.A., Bartoli, F.J., Grein, C.H., Young, P.M., Ehrenreich, H., Miles, R.H., and Chow, D.H., Auger lifetime enhancement in InAs–Ga1−xInxSb superlattices, Appl. Phys. Lett., 1994, vol. 64, no. 23, p. 3160. https://doi.org/10.1063/1.111325

    Article  ADS  Google Scholar 

  16. Haugan, H.J., Grazulis, L., Brown, G.J., Mahalingam, K., and Tomich, D.H., Exploring optimum growth for high quality InAs/GaSb type-II superlattices, J. Cryst. Growth, 2004, vol. 261, no. 4, pp. 471–478. https://doi.org/10.1016/j.jcrysgro.2003.09.045

    Article  ADS  Google Scholar 

  17. Rodriguez, J.B., Christol, P., Cerutti, L.M.B.E., Chevrier, F., and Joullié, A., MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection, J. Cryst. Growth, 2005, vol. 274, no. 1–2, pp. 6–13. https://doi.org/10.1016/j.jcrysgro.2004.09.088

    Article  ADS  Google Scholar 

  18. Khoshakhlagh, A., Plis, E., Myers, S., Sharma, Y.D., Dawson, L.R., and Krishna, S., Optimization of InAs/GaSb type-II superlattice interfaces for longwave (∼8 μm) infrared detection, J. Cryst. Growth, 2009, vol. 311, no. 7, pp. 1901—1904. https://doi.org/10.1016/j.jcrysgro.2008.11.027

    Article  ADS  Google Scholar 

  19. Kaspi, R., Steinshnider, J., Weimer, M., Moeller, C., and Ongstad, A., As-soak control of the InAs-on-GaSb interface, J. Cryst. Growth, 2001, vol. 225, no. 2–4, pp. 544–549. https://doi.org/10.1016/S0022-0248(01)00950-2

    Article  ADS  Google Scholar 

  20. Plis, E., Annamalai, S., Posani, K.T., Krishna, S., Rupani, R.A., and Ghosh, S., Midwave infrared type-II InAs/GaSb superlattice detectors with mixed interfaces, J. Appl. Phys., 2006, vol. 100, no. 1, p. 014510. https://doi.org/10.1063/1.2214222

  21. Bracker, A.S., Yang, M.J., Bennett, B.R., Culbertson, J.C., and Moore, W.J., Surface reconstruction phase diagrams for InAs, AlSb, and GaSb, J. Cryst. Growth, 2000, vol. 220, no. 4, pp. 384–392. https://doi.org/10.1016/S0022-0248(00)00871-X

    Article  ADS  Google Scholar 

  22. Lu, J., Luna, E., Aoki, T., Steenbergen, E.H., Zhang, Y.H., and Smith, D.J., Evaluation of antimony segregation in InAs/InAs1−xSbx type-II superlattices grown by molecular beam epitaxy, J. Appl. Phys., 2016, vol. 119, no. 9, p. 095702. https://doi.org/10.1063/1.4942844

  23. Johnson, J.L., Samoska, L.A., Gossard, A.C., Merz, J.L., et al., Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb, J. Appl. Phys., 1996, vol. 80, no. 2, pp. 1116–1127. https://doi.org/10.1063/1.362849

    Article  ADS  Google Scholar 

  24. Bennett, B.R., Shanabrook, B.V., and Twigg, M.E., Anion control in molecular beam epitaxy of mixed As/Sb III-V heterostructures, J. Appl. Phys., 1999, vol. 85, no. 4, pp. 2157–2161. https://doi.org/10.1063/1.369520

    Article  ADS  Google Scholar 

  25. Schmitz, J., Wagner, J., Fuchs, F., Herres, N., Koidl, P., and Ralston, J.D., Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecular-beam epitaxy, J. Cryst. Growth, 1995, vol. 150, pp. 858–862. https://doi.org/10.1016/0022-0248(95)80061-G

    Article  ADS  Google Scholar 

  26. Waterman, J.R., Shanabrook, B.V., Wagner, R.J., Yang, M.J., Davis, J.L., and Omaggio, J.P., The effect of interface bond type on the structural and optical properties of GaSb/InAs superlattices, Semicond. Sci. Technol., 1993, vol. 8, no. 1S, p. S106. https://doi.org/10.1088/0268-1242/8/1S/024

    Article  ADS  Google Scholar 

  27. Booker, G.R., Klipstein, P.C., Lakrimi, M., Lyapin, S., Mason N.J., Murgatroyd, I.J., and Walker, P.J., Growth of InAsGaSb strained layer superlattices. II, J. Cryst. Growth, 1995, vol. 146, no. 1–4, pp. 495–502. https://doi.org/10.1016/0022-0248(94)00536-2

    Article  ADS  Google Scholar 

  28. Zborowski, J.T., Vigliante, A., Moss, S.C., and Golding, T.D., Interface properties of (In,Ga)Sb/InAs heterostructures, J. Appl. Phys., 1996, vol. 79, no. 11, pp. 8379–8383. https://doi.org/10.1063/1.362557

    Article  ADS  Google Scholar 

  29. Tahraoui, A., Tomasini, P., Lassabatere, L., and Bonnet, J., Growth and optimization of InAs/GaSb and GaSb/InAs interfaces, Appl. Surf. Sci., 2000, vol. 162, pp. 425–429. https://doi.org/10.1016/S0169-4332(00)00227-0

    Article  ADS  Google Scholar 

  30. Lew, A.Y., Zuo, S.L., Yu, E.T., and Miles, R.H., Anisotropy and growth-sequence dependence of atomic-scale interface structure in InAs/Ga1−xInxSb superlattices, Appl. Phys. Lett., 1997, vol. 70, no. 1, pp. 75–77. https://doi.org/10.1063/1.119311

    Article  ADS  Google Scholar 

  31. Georgobiani, A.N., Martovitskii, V.P., Perlov, E.V., and Tokareva, V.P., X-ray diffraction analysis of quantum-size ZnMgSSe/ZnSe/ZnMgSSe nanostructures, Bull. Lebedev Phys. Inst., 2010, vol. 37, pp. 119–122. https://doi.org/10.3103/S1068335610040068

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Krivobok.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivobok, V.S., Pashkeev, D.A., Klekovkin, A.V. et al. Interface Design Development for Growing Short-Period InAs/GaSb Superlattices by Molecular-Beam Epitaxy. Bull. Lebedev Phys. Inst. 50, 396–402 (2023). https://doi.org/10.3103/S1068335623090051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623090051

Keywords:

Navigation