Log in

Processing Finely Dispersed Technogenic Raw Materials for Aluminum Production in Order to Extract Valuable Components

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The results of experimental work on the hydrometallurgical processing of finely dispersed technogenic raw materials for primary aluminum production in electrolyzers with self-baking anodes (using the example of the Irkutsk aluminum plant)—stale sludge—are presented. The components of this sludge are dust from electrostatic precipitators (79.7%), sludge from “wet” gas cleaning (4.4%), and tailings of coal foam flotation (15.8%). According to granulometric analysis, the particles of the stale sludge sample have a size of ‒50 μm. According to the results of an analysis of the chemical composition of the sludge sample, the main components in it are carbon, cryolite, and chiolite with small quantities of other compounds (corundum, ralstonite, spodumene, and fluorite). Fluorine leaching experiments have been carried out with a 2% sodium hydroxide solution at a stirrer speed of ~1020 rpm. Using the method of mathematical planning of a three-factor experiment, it is found that, to achieve the maximum concentration of fluorine in the solution (15.844 g/dm3), the optimal parameters for alkaline leaching of fluorine are a temperature of 90°C, a liquid-to-solid ratio of 9 : 1, and a duration of 90 min. The equation of the multidimensional polynomial of the process of alkaline leaching of fluorine from stale sludge is obtained. Cryolite is obtained from fluorine-containing solutions (by the reaction of interaction of sodium fluoride with sodium bicarbonate and an aluminate solution), which is confirmed by X-ray phase analysis data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Grjotheim, K. and Kvande, H., Introduction to Aluminium Electrolysis, Dusseldorf: Aluminium-Verlag, 1993.

    Google Scholar 

  2. Stojanovic, B., Bukvic, M., and Epler, I., Application of aluminum and aluminum alloys in engineering, Appl. Eng. Lett., 2018, vol. 3, no. 2, pp. 52–62. https://doi.org/10.18485/aeletters.2018.3.2.2

    Article  Google Scholar 

  3. Varshney, D. and Kumar, K., Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization, Ain Shams Eng. J., 2021, vol. 12, no. 1, pp. 1143–1152. https://doi.org/10.1016/j.asej.2020.05.013

    Article  Google Scholar 

  4. Summers, P.T., Chen, Y., Rippe, C.M., Allen, B., Mouritz, A.P., Case, S.W., and Lattimer, B.Y., Overview of aluminum alloy mechanical properties during and after fires, Fire Sci. Rev., 2015, vol. 4, article no. 3. https://doi.org/10.1186/s40038-015-0007-5

    Article  CAS  Google Scholar 

  5. Dudin, M.N., Voykova, N.A., Frolova, E.E., Artemieva, J.A., Rusakova, E.P., and Abashidze, A.H., Modern trends and challenges of development of global aluminum industry, Metalurgija, 2017, vol. 56, nos. 1–2, pp. 255–258.

    Google Scholar 

  6. Tarcy, G.P. and Torklep, K., Current efficiency in prebake and Soderberg cells, in Essential Readings in Light Metals, vol. 2: Aluminum Reduction Technology, Springer, 2013, pp. 211–216. https://doi.org/10.1002/9781118647851.ch30

  7. Mann, V., Buzunov, V., Pitertsev, N., Chesnyak, V., and Polyakov, P., Reduction in power consumption at UC RUSAL’s smelters 2012-2014, in Light Metals, Hyland M., Ed., Cham: Springer, 2015, pp. 757–762. https://doi.org/10.1002/9781119093435.ch128

  8. Bazhin, V.Yu., Smol’nikov, A.D., and Petrov, P.A., Concept of energy efficiency aluminum production “Electrolysis 600+”, Mezhdunar. Nauchno-Issled. Zh., 2016, vol. 5, no 3, pp. 37–40. https://doi.org/10.18454/IRJ.2016.47.113

  9. Grigor’ev, V.G., Tepikin, S.V., Kuzakov, A.A., P’yankin, A.P., Timkina, E.V., and Pinaev, A.A., Automatic feed of raw materials in aluminum production, Vestn. Gorn.-Metall. Sekts. Ross. Akad. Estestv. Nauk. Otd. Metall., 2017, no. 39, pp. 97–104.

  10. Shepelev, I.I., Golovnykh, N.V., Sakhachev, A.Yu., Zhyzhaev, A.M., and Kotlyagin, A.G., Improving limestone-nepheline charge sinter quality by gypsum anhydrate technogenic raw material introduction, Proc. Irkutsk State Tech. Univ., 2018, vol. 22, no. 5, pp. 225–239. https://doi.org/10.21285/1814-3520-2018-5-225-239

    Article  Google Scholar 

  11. Bazhin, V.Yu., Brichkin, V.N., Sizyakov, V.M., and Cherkasova, M.V., Pyrometallurgical treatment of a nepheline charge using additives of natural and technogenic origin, Metallurgist, 2017, vol. 61, no. 1, pp. 147–154. https://doi.org/10.1007/s11015-017-0468-y

    Article  CAS  Google Scholar 

  12. Pawlek, R.P., Spent potlining: An update, in Light Metals, Suarez, C.E., Ed., Cham: Springer, 2012, pp. 1313–1317. https://doi.org/10.1007/978-3-319-48179-1_227.

  13. Vinogradov, A.M., Pinaev, A.A., Vinogradov, D.A., Puzin, A.V., Shadrin, V.G., Zor’ko, N.V., and Somov, V.V., Increasing hooding efficiency of Soderberg cells, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2017, no. 1, pp. 19–30. https://doi.org/10.17073/0021-3438-2017-1-19-30

  14. Baranov, A.N., Timkina, E.V., and Tyutrin, A.A., Research on leading fluorine from carbon-containing materials of aluminum production, Proc. Irkutsk State Tech. Univ., 2017, vol. 21, no. 7, pp. 143–151. https://doi.org/10.21285/1814-3520-2017-7-143-151

    Article  Google Scholar 

  15. Burdonov, A.E., Zelinskaya, E.V., Gavrilenko, L.V., and Gavrilenko, A.A., Investigation of substantial composition of alumina-bearing material of aluminium electrolysers for usage in primary aluminium technology, Tsvetn. Met. (Moscow, Russ. Fed.), 2018, no. 3, pp. 32–38. https://doi.org/10.17580/tsm.2018.03.05

  16. Tian, X., Zhu, A., Wei, J., and Han, R., Preparation and forming technology of particle reinforced aluminum matrix composites, Mater. Sci.: Adv. Compos. Mater., 2017, vol. 1, no. 1, pp. 1–9.

    Google Scholar 

  17. Stojanović, B. and Ivanović, L., Application of aluminium hybrid composites in automotive industry, Tehničkivjesnik, 2015, vol. 22, no. 1, pp. 247–251. https://doi.org/10.17559/TV-20130905094303

    Article  Google Scholar 

  18. Su Hai, Gao Wenli, Feng Zhaohui, and Lu Zheng, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminium matrix composites, Mater. Des., 2012, vol. 36, pp. 590–596. https://doi.org/10.1016/j.matdes.2011.11.064

    Article  CAS  Google Scholar 

  19. Belov, N.A., Fazovyi sostav promyshlennykh i perspektivnykh alyuminievykh splavov (Phase Composition of Industrial and Promising Aluminum Alloys), Moscow: National Univ. of Science and Technology MISiS, 2010.

  20. Kulikov, B.P. and Istomin, S.P., Pererabotka otkhodov alyuminievogo proizvodstva (Processing of Aluminum Waste Products), Krasnoyarsk: Klassik Tsentr, 2004.

  21. Nemchinova, N.V., Tyutrin, A.A., and Barauskas, A.E., Analyzing the chemical composition of man-made materials resultant from the production of primary aluminium in order to find cost-effective recycling techniques, Tsvetn. Met. (Moscow, Russ. Fed.), 2019, no. 12, pp. 22–29. https://doi.org/10.17580/tsm.2019.12.03

  22. Mann, V., **in, V., Zherdev, A., Bogdanov, Yu., Pavlov, S., and Somov, V., SPL Recycling and Re-processing, in Light Metals, Ratvik, A., Ed., Cham: Springer, 2017, pp. 571–578. https://doi.org/10.1007/978-3-319-51541-0_71.

  23. Patrin, R.K. and Bazhin, V.Yu., Spent linings from aluminum cells as a raw material for the metallurgical, chemical, and construction industries, Metallurgist, 2014, vol. 58, nos. 7–8, pp. 625–629. https://doi.org/10.1007/s11015-014-9967-2

    Article  CAS  Google Scholar 

  24. Kruger, P.V., Use of Spent Pot Lining (SPL) in ferro silico manganese smelting, in Light Metals, Lindsay, S., Ed., Springer, 2011, pp. 275–280. https://doi.org/10.1002/9781118061992.ch49.

  25. Petrovskiy, A.A., Nemchinova, N.V., Tyutrin, A.A., and Korepina, N.A., Use of leaching cake from refractory lining of dismantled electrolysers in cement production, Proc. Int. Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” Dedicated to the 85th Anniversary of H.I. Ibragimov (ISEES 2019), Atlantis Press, 2019, vol. 1, pp. 465–470. https://doi.org/10.2991/isees-19.2019.91.

  26. Flores, I.V., Fraiz, F., Lopes, R.A., Jr., and Bagatini, M.C., Evaluation of Spent Pot Lining (SPL) as an alternative carbonaceous material in ironmaking processes, J. Mater. Res. Technol., 2019, vol. 8, no. 1, pp. 33–40. https://doi.org/10.1016/j.jmrt.2017.11.004

    Article  CAS  Google Scholar 

  27. Nemchinova, N.V., Tyutrin, A.A., Korepina, N.A., and Belskii, S.S., On the possibility of carbonaceous dust waste use of prebaked anode production in silicon metallurgy, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 411, p. 012052. https://doi.org/10.1088/1757-899X/411/1/012052.

  28. Zenkin, E.Yu., Gavrilenko, A.A., and Nemchinova, N.V., About recycling of primary aluminum production of JSC RUSAL Bratsk, Proc. Irkutsk State Tech. Univ., 2017, vol. 21, no. 3, pp. 123–132. https://doi.org/10.21285/1814-3520-2017-3-123-132

    Article  Google Scholar 

  29. Timkina, E.V., Baranov, A.N., Petrovskaya, V.N., and Ershov, V.A., Thermodynamics of fluorine leaching from aluminum production waste, Proc. Irkutsk State Tech. Univ., 2016, vol. 20, no. 12, pp. 182–192. https://doi.org/10.21285/1814-3520-2016-12-182-192

    Article  Google Scholar 

  30. Gulyaev, A.V., Gavrilenko, L.V., Baranov, A.N., and Nozhko, S.I., Recovery of solid carbonaceous wastes at an aluminium plant equipped with electrolyte tanks with self-baking anode with an upper current lead, Ecol. Ind. Russ., 2017, vol. 21, no. 5, pp. 8–10. https://doi.org/10.18412/1816-0395-2017-5-8-10

    Article  Google Scholar 

  31. Nemchinova, N.V., Yakushevich, P., Yakovleva, A., and Gavrilenko, L.V., Experiment for use of Bratsk aluminium plant technogenic waste as a reducing agent during cast iron smelting, Metallurgist, 2018, vol. 62, nos. 1–2, pp. 150–155. https://doi.org/10.1007/s11015-018-0637-7

    Article  CAS  Google Scholar 

  32. Nemchinova, N.V., Mineev, G.G., Tyutrin, A.A., and Yakovleva, A.A., Utilization of dust from silicon production, Steel Transl., 2017, vol. 47, no. 12, pp. 763–767. https://doi.org/10.3103/S0967091217120087

    Article  Google Scholar 

  33. Nemchinova, N.V., Leonova, M.S., and Tyutrin, A.A., Experimental works on pelletized charge smelting in silicon production, Proc. Irkutsk State Tech. Univ., 2017, vol. 21, no. 1, pp. 209–217. https://doi.org/10.21285/1814-3520-2017-1-209-217

    Article  Google Scholar 

  34. Petlin, I.V. and Malyutin, L.N., Hydrogen fluoride producing technology from aluminum industry fluorine-containing waste products, Izv. VUZov, Prikl. Khim. Biotekhnol., 2014, vol. 7, no. 2, pp. 24–31.

    Google Scholar 

  35. Barauskas, A.E. and Nemchinova, N.V., Hydrometallurgical processing of technogenic finely dispersed fluorocarbon-containing raw materials of primary aluminum production, Proc. Irkutsk State Tech. Univ., 2020, vol, 24, no. 6, pp. 1311–1323. https://doi.org/10.21285/1814-3520-2020-6-1311-1323

    Article  Google Scholar 

  36. Nemchinova, N.V., Tyutrin, A.A., and Somov, V.V., Determination of optimal fluorine leaching parameters from the coal part of the waste lining of dismantled electrolytic cells for aluminum production, J. Min. Inst., 2019, vol. 239, pp. 544–549. https://doi.org/10.31897/PMI.2019.5.544

    Article  Google Scholar 

  37. Komarova, N.V. and Kamentsev, Ya.S., Prakticheskoe rukovodstvo po ispol’zovaniyu sistem kapillyarnogo elektroforeza “Kapel’” (Practical Guide on Use of the “Kapel” Capillary Electrophoresis Systems), St. Petersburg: Veda, 2006.

  38. Borovikov, V.V., Populyarnoe vvedenie v sovremennyi analiz dannykh v sisteme STATISTICA (Popular Introduction to Modern Data Analysis in the STATISTICA System), Moscow: Goryachaya Liniya-Telekom, 2013.

  39. Vetoshkin, A.G., Protsessy i apparaty gazoochistki. Uchebnoe posobie (Processes and Devices for Gas Cleaning), Penza: Penza State Univ., 2006.

Download references

Funding

This study was funded by the Russian Foundation for Basic Research, project number 20-38-90212.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Nemchinova, A. E. Barauskas, A. A. Tyutrin or V. S. Vologin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemchinova, N.V., Barauskas, A.E., Tyutrin, A.A. et al. Processing Finely Dispersed Technogenic Raw Materials for Aluminum Production in Order to Extract Valuable Components. Russ. J. Non-ferrous Metals 62, 659–667 (2021). https://doi.org/10.3103/S1067821221060158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821221060158

Keywords:

Navigation