Log in

Wave Analysis and Representation of Fundamental Solution in Modified Couple Stress Thermoelastic Diffusion with Voids, Nonlocal and Phase Lags

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In the present study, we explored a new mathematical formulation involving modified couple stress thermoelastic diffusion (MCTD) with nonlocal, voids and phase lags. The governing equations are expressed in dimensionless form for the further investigating. The desired equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature field, chemical potential and volume fraction field). The fundamental solutions are constructed for the obtained system of equations for steady oscillation and some basic features of the solutions are established. Also, plane wave vibrations has been examined for two dimensional cases. The characteristic equation yields the attributes of waves like phase velocity, attenuation coefficients, specific loss and penetration depth which are computed numerically and presented in form of distinct graphs. Some unique cases are also deduced. The results provide the motivation for the researcher to investigate thermally conducted modified couple stress elastic material under nonlocal, porosity and phase lags impacts as a new class of applicable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Ration. Mech. Anal. 11, 415–448 (1962). https://doi.org/10.1007/bf00253946

    Article  MathSciNet  Google Scholar 

  2. R. A. Toupin, “Elastic materials with couple-stresses,” Arch. Ration. Mech. Anal. 11, 385–414 (1962). https://doi.org/10.1007/bf00253945

    Article  MathSciNet  Google Scholar 

  3. W. T. Koiter, “Couple stresses in the theory of elasticity I and II,” Proc. R. Ser. B, Koninklijke Nederlandse Acad. Wetenschappen 67, 17–44 (1964).

  4. F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/s0020-7683(02)00152-x

    Article  Google Scholar 

  5. W. Nowacki, “Dynamical problems of thermodiffusion in solids—I,” Bull. Pol. Acad. Sci. Ser., Sci. Technol. 22, 55–64 (1974).

    Google Scholar 

  6. W. Nowacki, “Dynamical problems of thermodiffusion in solids—II,” Bull. Pol. Acad. Sci. Ser., Sci. Technol. 22, 205–211 (1974).

    Google Scholar 

  7. W. Nowacki, “Dynamical problems of thermodiffusion in solids—III,” Bull. Pol. Acad. Sci. Ser., Sci. Technol. 22, 257–266 (1974).

    Google Scholar 

  8. W. Nowacki, “Dynamic problems of diffusion in solids,” Eng. Fract. Mech. 8, 261–266 (1976). https://doi.org/10.1016/0013-7944(76)90091-6

    Article  Google Scholar 

  9. H. H. Sherief, F. A. Hamza, and H. A. Saleh, “The theory of generalized thermoelastic diffusion,” Int. J. Eng. Sci. 42, 591–608 (2004). https://doi.org/10.1016/j.ijengsci.2003.05.001

    Article  MathSciNet  Google Scholar 

  10. R. Kumar and T. Kansal, “Dynamic problem of generalized thermoelastic diffusive medium,” J. Mech. Sci. Technol. 24, 337–342 (2010). https://doi.org/10.1007/s12206-009-1109-6

    Article  Google Scholar 

  11. H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids 15, 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  Google Scholar 

  12. M. Aouadi, “A theory of thermoelastic diffusion materials with voids,” Z. Angew. Math. Phys. 61, 357–379 (2010). https://doi.org/10.1007/s00033-009-0016-0

    Article  MathSciNet  Google Scholar 

  13. M. A. Goodman and S. C. Cowin, “A continuum theory for granular materials,” Arch. Ration. Mech. Anal. 44, 249–266 (1972). https://doi.org/10.1007/bf00284326

    Article  MathSciNet  Google Scholar 

  14. J. W. Nunziato and S. C. Cowin, “A nonlinear theory of elastic materials with voids,” Arch. Ration. Mech. Anal. 72, 175–201 (1979). https://doi.org/10.1007/bf00249363

    Article  MathSciNet  Google Scholar 

  15. S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids,” J. Elasticity 13, 125–147 (1983). https://doi.org/10.1007/bf00041230

    Article  Google Scholar 

  16. P. Puri and S. C. Cowin, “Plane waves in linear elastic materials with voids,” J. Elasticity 15, 167–183 (1985). https://doi.org/10.1007/bf00041991

    Article  Google Scholar 

  17. D. Ieşan, “A theory of thermoelastic materials with voids,” Acta Mech. 60, 67–89 (1986). https://doi.org/10.1007/bf01302942

    Article  Google Scholar 

  18. A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002). https://doi.org/10.1007/b97697

    Book  Google Scholar 

  19. D. Y. Tzou, “A unified field approach for heat conduction from macro- to micro-scales,” J. Heat Transfer 117, 8–16 (1995). https://doi.org/10.1115/1.2822329

    Article  Google Scholar 

  20. B.-Ya. Cao and Z.-Yu. Guo, “Equation of motion of a phonon gas and non-Fourier heat conduction,” J. Appl. Phys. 102, 053503 (2007). https://doi.org/10.1063/1.2775215

  21. D. Y. Tzou and Z. Guo, “Nonlocal behavior in thermal lagging,” Int. J. Therm. Sci. 49, 1133–1137 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.01.022

    Article  Google Scholar 

  22. S. Sharma, K. Sharma, and R. R. Bhargava, “Effect of viscosity on wave propagation in anisotropic thermoelastic with Green–Naghdi theory type-II and type-III,” Math. Phys. Mech. 16, 144–158 (2013).

    Google Scholar 

  23. D. Ieşan and L. Nappa, “Thermal stresses in plane strain of porous elastic solids,” Meccanica 39, 125–138 (2004). https://doi.org/10.1023/b:mecc.0000005118.15612.01

    Article  MathSciNet  Google Scholar 

  24. D. Ieşan, “Nonlinear plane strain of elastic materials with voids,” Math. Mech. Solids 11, 361–384 (2006). https://doi.org/10.1177/1081286505044134

    Article  MathSciNet  Google Scholar 

  25. S. Sharma, K. Sharma, and R. R. Bhargava, “Plane waves and fundamental solution in an electro-microstretch elastic solids,” Afr. Mat. 25, 483–497 (2013). https://doi.org/10.1007/s13370-013-0161-7

    Article  MathSciNet  Google Scholar 

  26. S. Sharma, K. Sharma, and R. R. Bhargava, “Plane waves and fundamental solution in an electro-microstretch elastic solids,” Afr. Mat. 25, 483–497 (2014). https://doi.org/10.1007/s13370-013-0161-7

    Article  MathSciNet  Google Scholar 

  27. K. Sharma and P. Kumar, “Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids,” J. Therm. Stresses 36, 94–111 (2013). https://doi.org/10.1080/01495739.2012.720545

    Article  Google Scholar 

  28. R. Kumar, Sh. Rajneesh, and V. Sharma, “Plane waves and fundamental solution in a modified couple stress generalized thermoelastic with mass diffusion,” Math. Phys. Mech. 24, 72–85 (2015).

    Google Scholar 

  29. R. Kumar, R. Vohra, and M. G. Gorla, “Some considerations of fundamental solution in micropolar thermoelastic materials with double porosity,” Arch. Mech. 68, 263–284 (2016).

    MathSciNet  Google Scholar 

  30. S. Biswas, “Fundamental solution of steady oscillations in thermoelastic medium with voids,” Waves Random Complex Media 30, 759–775 (2020). https://doi.org/10.1080/17455030.2018.1557759

    Article  MathSciNet  Google Scholar 

  31. M. M. Svanadze, “On the solutions of quasi-static and steady vibrations equations in the theory of viscoelasticity for materials with double porosity,” Trans. A. Razmadze Math. Inst. 172, 276–292 (2018). https://doi.org/10.1016/j.trmi.2018.01.002

    Article  MathSciNet  Google Scholar 

  32. T. Kansal, “Fundamental solution in the theory of thermoelastic diffusion materials with double porosity,” J. Solid Mech. 11, 281–296 (2019). https://doi.org/10.22034/jsm.2019.665384

    Article  Google Scholar 

  33. R. Kumar, S. Ghangas, and A. K. Vashishth, “Fundamental and plane wave solution in non-local bio-thermoelasticity diffusion theory,” Coupled Syst. Mech. 10, 21–38 (2021). https://doi.org/10.12989/csm.2021.10.1.021

    Article  Google Scholar 

  34. R. Kumar and D. Batra, “Plane wave and fundamental solution in steady oscillation in swelling porous thermoelastic medium,” Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2091178

  35. R. Kumar, “Response of thermoelastic beam due to thermal source in modified couple stress theory,” Comput. Methods Sci. Technol. 22, 95–101 (2016). https://doi.org/10.12921/cmst.2016.22.02.004

  36. L. Hörmander, Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften, Vol. 116 (Springer, Berlin, 1963). https://doi.org/10.1007/978-3-642-46175-0

  37. H. H. Sherief and H. A. Saleh, “A half-space problem in the theory of generalized thermoelastic diffusion,” Int. J. Solids Struct. 42, 4484–4493 (2005). https://doi.org/10.1016/j.ijsolstr.2005.01.001

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Kumar, S. Kaushal or Pragati.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

$${{M}_{1}} = - {{a}_{6}}{{a}_{{25}}}{{a}_{{28}}}{{a}_{{31}}},\quad {{M}_{2}} = \left[ {{{a}_{{28}}}{{a}_{{31}}}\left( {{{a}_{{25}}}{{a}_{{26}}} - {{a}_{6}}{{\omega }^{2}} + {{a}_{4}}{{a}_{8}}} \right) - {{a}_{6}}{{a}_{{25}}}\left( {{{a}_{{29}}}{{a}_{{31}}} + {{a}_{{28}}}{{a}_{{32}}}} \right) - {{a}_{6}}{{a}_{{27}}}{{a}_{{31}}}} \right],$$
$${{M}_{3}} = \left[ {{{a}_{{25}}}{{a}_{{26}}}\left( {{{a}_{{29}}}{{a}_{{31}}} + {{a}_{{25}}}{{a}_{{29}}}} \right) - {{a}_{6}}{{a}_{{25}}}\left( {{{a}_{{29}}}{{a}_{{32}}} - {{a}_{{16}}}{{a}_{{20}}}{{\omega }^{4}}} \right) - {{\omega }^{2}}\left( {{{a}_{9}}{{a}_{{15}}}{{a}_{{31}}}{{a}_{{25}}}} \right.} \right.$$
$$\left. { + \;{{a}_{{11}}}{{a}_{{25}}}{{a}_{{21}}}{{a}_{{28}}} - {{a}_{{23}}}{{a}_{{25}}}{{a}_{{28}}} + {{a}_{6}}{{a}_{{29}}}{{a}_{{31}}} + {{a}_{6}}{{a}_{{28}}}{{a}_{{32}}} - {{a}_{8}}{{a}_{{15}}}{{a}_{{31}}} - {{a}_{6}}{{a}_{{16}}}{{a}_{{30}}} + {{a}_{5}}{{a}_{8}}{{a}_{{21}}}{{a}_{{28}}}} \right)$$
$$\left. { - \;{{\omega }^{2}}\left( {{{a}_{5}}{{a}_{6}}{{a}_{{20}}}{{a}_{{27}}}} \right) + {{a}_{4}}{{a}_{8}}\left( {{{a}_{{29}}}{{a}_{{31}}} + {{a}_{{28}}}{{a}_{{32}}}} \right) + {{a}_{{27}}}{{a}_{{31}}}\left( {{{a}_{4}}{{a}_{9}} + {{a}_{{26}}}} \right) + {{a}_{{30}}}\left( {{{a}_{4}}{{a}_{{11}}}{{a}_{{28}}} + {{a}_{5}}{{a}_{6}}{{a}_{{29}}}} \right)} \right],$$
$${{M}_{4}} = \left[ {{{a}_{{25}}}{{a}_{{26}}}\left( {{{a}_{{29}}}{{a}_{{32}}} - {{a}_{{16}}}{{a}_{{20}}}{{\omega }^{4}}} \right) - {{a}_{6}}{{a}_{{25}}}\left( {{{a}_{{29}}}{{a}_{{32}}} - {{a}_{{16}}}{{a}_{{20}}}{{\omega }^{4}}} \right) - {{\omega }^{2}}\left( {{{a}_{9}}{{a}_{{15}}}{{a}_{{32}}}{{a}_{{25}}} + {{a}_{{11}}}{{a}_{{25}}}{{a}_{{21}}}{{a}_{{29}}}} \right.} \right.$$
$$\left. { - \;{{a}_{{26}}}{{a}_{{29}}}{{a}_{{31}}} - {{a}_{{26}}}{{a}_{{28}}}{{a}_{{32}}} + {{a}_{6}}{{a}_{{29}}}{{a}_{{32}}} + {{a}_{4}}{{a}_{9}}{{a}_{{16}}}{{a}_{{30}}} + {{a}_{4}}{{a}_{{11}}}{{a}_{{20}}}{{a}_{{27}}} - {{a}_{8}}{{a}_{{15}}}{{a}_{{32}}}} \right) - {{\omega }^{2}}\left( {{{a}_{{26}}}{{a}_{{16}}}{{a}_{{30}}}} \right.$$
$$\left. { + \;{{a}_{{11}}}{{a}_{{21}}}{{a}_{{27}}}} \right) + {{\omega }^{2}}\left( {{{a}_{{11}}}{{a}_{{15}}}{{a}_{{30}}} - {{a}_{5}}{{a}_{8}}{{a}_{{21}}}{{a}_{{29}}} + {{a}_{5}}{{a}_{{26}}}{{a}_{{20}}}{{a}_{{27}}} - {{a}_{5}}{{a}_{9}}{{a}_{{27}}}{{a}_{{21}}} + {{a}_{5}}{{a}_{9}}{{a}_{{15}}}{{a}_{{30}}}} \right)$$
$$ + \;{{\omega }^{4}}\left( {{{a}_{{25}}}{{a}_{9}}{{a}_{{16}}}{{a}_{{21}}} + {{a}_{{11}}}{{a}_{{15}}}{{a}_{{20}}}{{a}_{{25}}} - {{a}_{9}}{{a}_{{15}}}{{a}_{{31}}} - {{a}_{{11}}}{{a}_{{21}}}{{a}_{{28}}}} \right) + {{a}_{{16}}}{{\omega }^{4}}\left( {{{a}_{4}}{{a}_{{20}}} - {{a}_{8}}{{a}_{{21}}}} \right)$$
$$\left. { + \;{{a}_{5}}{{a}_{8}}{{a}_{{15}}}{{a}_{{20}}}{{\omega }^{4}} + {{a}_{6}}{{a}_{{16}}}{{a}_{{20}}}{{\omega }^{6}} + {{a}_{4}}{{a}_{{32}}}\left( {{{a}_{8}}{{a}_{{29}}} + {{a}_{9}}{{a}_{{27}}}} \right) + {{a}_{{26}}}{{a}_{{27}}}{{a}_{{32}}} + {{a}_{{29}}}{{a}_{{30}}}\left( {{{a}_{4}}{{a}_{{11}}} - {{a}_{5}}{{a}_{{26}}}} \right)} \right],$$
$${{M}_{5}} = \left[ {\left( {{{a}_{{26}}}{{a}_{{29}}}{{a}_{{32}}}{{\omega }^{2}} - {{a}_{{16}}}{{a}_{{20}}}{{a}_{{26}}}{{\omega }^{6}} - {{a}_{9}}{{a}_{{15}}}{{a}_{{32}}}{{\omega }^{4}}} \right) + {{\omega }^{6}}\left( {{{a}_{9}}{{a}_{{16}}}{{a}_{{21}}} + {{a}_{{11}}}{{a}_{{15}}}{{a}_{{20}}}} \right) - {{a}_{{11}}}{{a}_{{21}}}{{a}_{{29}}}{{\omega }^{4}}} \right],$$

where

$${{a}_{{25}}} = {{\omega }^{2}}\xi _{1}^{2} - ({{a}_{1}} + {{a}_{2}}),\quad {{a}_{{26}}} = - {{a}_{7}} + {{a}_{{10}}}i\omega + {{\omega }^{2}},\quad {{a}_{{27}}} = - {{a}_{{15}}}{{\omega }^{2}},\quad {{a}_{{28}}} = - \left( {{{a}_{{13}}}\tau _{{v}}^{1} + \tau _{T}^{1}} \right),$$
$${{a}_{{29}}} = \tau _{q}^{1}{{a}_{{14}}}{{\omega }^{2}},\quad {{a}_{{30}}} = - {{a}_{{21}}}{{\omega }^{2}},\quad {{a}_{{31}}} = - {{a}_{{19}}}\tau _{R}^{1} - \tau _{P}^{1},\quad {{a}_{{32}}} = {{\omega }^{2}}\tau _{\eta }^{1}.$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kaushal, S. & Pragati Wave Analysis and Representation of Fundamental Solution in Modified Couple Stress Thermoelastic Diffusion with Voids, Nonlocal and Phase Lags. Russ Math. 68, 31–51 (2024). https://doi.org/10.3103/S1066369X24700099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X24700099

Keywords:

Navigation