Log in

Properties of Titanium Carbonitride TiCN Coatings Obtained by Vacuum Arc Deposition

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A comprehensive study is performed on the effect of vacuum arc conditions on the formation of TiCN coatings, specifically focusing on parameters such as the bias potential applied to the substrate, nitrogen partial pressure, and the composition of the C2H2–N2 gas mixture. Our investigation encompassed analyses of the coatings’ chemical composition, structure (lattice parameter, texture factor, orientation, grain size, level of microstrains), and mechanical properties (microhardness, adhesion strength indicators, and coefficient of friction). The results reveal that the coatings predominantly exhibit a polycrystalline nature and possess a cubic B1-NaCl structure, characterized by visible diffraction peaks in the range of 2θ from 30° to 80°, corresponding to reflections (111), (200), (220), and (222). The lattice parameter of TiN was found to increase from 0.4291 to 0.4301 nm with variations in the concentration of C2H2, while the texture coefficient concurrently increased from 5.91 to 5.97. The hardness of the coatings at a bias potential Ubias = –200 V exhibited variation from 31.7 to 33.9 GPa, depending on the C/N ratio. Variations in the elemental composition of the coatings led to changes in adhesion strength, with failure occurring at a load F = 62.1 N. The coefficient of friction was measured at μ = 0.45 under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Manokhin, A.S., Klimenko, S.A., Beresnev, V.M., Klimenko, S.An., Kopeikina, M.Yu., Stolbovii, V.O., and Litovchenko, S.V., Rizal’ni instrumenti z kompozitu na osnovi kubichnogo nitridu boru z pokrittya (Cutting Tools Made of a Composite Based on Cubic Boron Nitride with a Coating), Kyiv: Naukova Dumka, 2023.

    Google Scholar 

  2. Aks’onov, I.I., Andreev, A.O., Bilous, V.A., Strel’nits’kii, V.E., and Khoroshikh, V.M., Vakuumna duga: dzherela plazmi, osadzhennya pokrittiv, pripoverkhneve modifikuvannya (Vacuum Arc: Plasma Sources, Coating Deposition, Near-Surface Modification), Kyiv: Naukova Dumka, 2012.

  3. Cavaleiro, A. and Hosson, J.Th.M., Nanostructured Coatings, New York: Springer, 2006.

    Book  Google Scholar 

  4. Agrawal, S., Chakrabarti, A.K., and Chattopadhyay, A.B., A study of the machining of cast austenitic stainless-steels with carbide tools, J. Mater. Process. Technol., 1995, vol. 52, pp. 610–620.

    Article  Google Scholar 

  5. Knotek, O., Löffler, F., and Krämer, G., Arc deposition of Ti–C and Ti–C–N using acetylene as a reactive gas, Vacuum, 1992, vol. 43, nos. 5–7, pp. 645–648.

    Article  CAS  Google Scholar 

  6. Qi, W., Fu, S., Li, T., Ye, F., Guan, S., and Chen, Sh., Investigation of preparation and properties of TiCN coatings by reactive plasma spraying, J. Phys.: Conf. Ser., 2021, vol. 1983, p. 012103.

    CAS  Google Scholar 

  7. Chuan, S.P., Ghani, J.A., Ghazali, M.J., Jaafar, T.R., Selamat, M.A., and Har, Ch.H.Ch., Characterization of TiCN and TiCN/ZrN coatings for cutting tool application, Ceram. Int., 2013, vol. 39, no. 2, pp. 1293–1298.

    Article  Google Scholar 

  8. Grigoletto, S., Synthesis and Characterization of Titanium Carbon Nitride Films by High Power Impulse Magnetron Sputtering Relatore, Di Laurea Magistrale in Fisica, 2013/2014.

    Google Scholar 

  9. Drobyshevskaya, A.A., Davydov, I.V., Fursova, E.V., and Beresnev, V.M., Nanocomposite coatings based on transition metal nitrides, Fiz. Inzh. Poverkhn., 2008, vol. 6, nos. 1–2, pp. 93–98.

    Google Scholar 

  10. Bull, S., Bhat, D., and Staia, M., Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modelling, Surf. Coat. Technol., 2003, vols. 163–164, pp. 499–506.

    Article  Google Scholar 

  11. Balázsi, K., Lukács, I.E., Gurbán, S., Menyhárd, M., Bacáková, L., Vandrovcová, M., and Balázsi, C., Structural, mechanical and biological comparison of TiC and TiCN nanocomposites films, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2217–2221.

    Article  Google Scholar 

  12. Mamaeva, A.A., Kenzhegulov, A.K., Panichkin, A.V., Alibekov, Zh.Zh., Kshibekova, B.B., Wieleba, W., Lesniewski, T., and Bakhytuly, N., The study of the tribological properties under high contact pressure conditions of TiN, TiC and TiCN coatings depositedby the magnetron sputtering method on the AISI 304 stainless steel substrate, Mater. Sci.-Pol., 2023, vol. 41, no. 1, pp. 1–14.

    Article  Google Scholar 

  13. Lackner, J.M., Waldhauser, W., and Ebner, R., Large-area high rate pulsed laser deposition of smooth TiCxN1 – x coatings at room temperature – mechanical and tribological properties, Surf. Coat. Technol., 2004, vol. 188, pp. 519–524.

    Article  Google Scholar 

  14. Restello, S., Boscarino, D., and Rigato, V., A study of Ti–C–N(H) and Ti:CNx(H) coatings grown with a magnetron sputtering PECVD hybrid deposition process, Surf. Coat. Technol., 2006, vol. 200, pp. 6230–6234.

    Article  CAS  Google Scholar 

  15. Arrando, F., Polo, M.C., Molera, P., and Esteve, J., Comparative study of high corrosion resistant TiCxN1 – x and TiN hard coatings, Surf. Coat. Technol., 1994, vols. 68–69, pp. 536–540.

    Article  Google Scholar 

  16. Liu, G., Li, R., Yuan, T., Zhang, M., and Zeng, F., Spark plasma sintering of pure TiCN: densification mechanism, grain growth and mechanical properties, Int. J. Refract. Met. Hard Mater., 2017, vol. 66, pp. 68–75.

    Article  CAS  Google Scholar 

  17. Fang, T.-H., Jian, S.-R., and Chuu, D.-S., Nanomechanical properties of TiC, TiN and TiCN thin films using scanning probe microscopy and nanoindentation, Appl. Surf. Sci., 2004, vol. 228, pp. 365–372.

    Article  CAS  Google Scholar 

  18. Banapurmath, N.R., Tungal, M.R., Hallad, S.A., Kaladagi, K.S., Angadi, N.B., and Shettar, A.S., Tribological studies on bearings coated with titanium carbo-nitride (TiCN) using chemical vapour deposition (CVD) method, J. Appl. Res. Technol., 2018, vol. 16, no. 4, pp. 312–319.

    Article  Google Scholar 

  19. Guojun, Zh., Bin, L., Bailing, J., Fuxue, Y., and Dichun, Ch., Microstructure and tribological properties of TiN, TiC and Ti(C, N) thin films prepared by closed-field unbalanced magnetron sputtering ion plating, Appl. Surf. Sci., 2009, vol. 255, no. 21, pp. 8788–8793.

    Article  Google Scholar 

  20. Polcar, T., Novák, R., and Široký, P., The tribological characteristics of TiCN coating at elevated temperatures, Wear, 2006, vol. 260, nos. 1–2, pp. 40–49.

    Article  CAS  Google Scholar 

  21. Shafyei, H. and Ashiri, R., Electron beam assisted physical vapor deposition of very hard TiCN coating with nanoscale characters, Ceram. Int., 2019, vol. 45, no. 12, pp. 14821–14828.

    Article  CAS  Google Scholar 

  22. Kimura, T., Yoshida, R., Azuma, K., and Nakao, S., Preparation of titanium carbon nitride by reactive high power pulsed sputtering Penning discharges, Vacuum, 2018, vol. 157, pp. 192–201.

    Article  CAS  Google Scholar 

  23. Zhang, G., Li, B., Jiang, B., Chen, D., and Yan, F., Microstructure and mechanical properties of multilayer Ti(C,N) films by closed-field unbalanced magnetron sputtering ion plating, J. Mater. Sci. Technol., 2010, vol. 26, pp. 119–124.

    Article  Google Scholar 

  24. Harris, G.B., Quantitative measurement of preferred orientation in rolled uranium bars, Phil. Mag., 1952, vol. 43, pp. 3–11.

    Article  Google Scholar 

  25. Mamaeva, A., Kenzhegulov, A., Panichkin, A., Alibekov, Zh., and Wieleba, W., Effect of magnetron sputtering deposition conditions on the mechanical and tribological properties of wear-resistant titanium carbonitride coatings, Coatings, 2022, vol. 12, no. 2, p. 193.

    Article  CAS  Google Scholar 

  26. Valli, J., A review of adhesion test methods for thin hard coating, J. Vac. Sci. Technol., A, 1986, vol. 4, pp. 3007–3014.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Research Fund of Ukraine as part of the project “Development of composites based on cubic boron nitride with protective nanostructured coatings, study of their physico-mechanical and operational properties in the conditions of manufacturing aviation equipment” (project no. 2022.01/0046) (the winning project of the competition “Science for the Recovery of Ukraine in Military and Post-War Periods”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Klymenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klymenko, S.A., Lytovchenko, S.V., Klymenko, S.A. et al. Properties of Titanium Carbonitride TiCN Coatings Obtained by Vacuum Arc Deposition. J. Superhard Mater. 46, 204–211 (2024). https://doi.org/10.3103/S1063457624030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457624030055

Keywords:

Navigation