Log in

Physical Dispersion Method and Mechanism of Graphene

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

As a reinforcement phase to form metal matrix composites, graphene has attracted more and more attention due to its excellent properties i.e. optical, electrical and mechanical properties. However, the dispersion of graphene has always been an important factor that significantly effects its development. This paper mainly summarizes the physical methods to improve the dispersion of graphene and analyzes its internal mechanism, moreover the advantages and disadvantages of these methods are depicted and compared. Finally, the improvement of the dispersion of graphene and its future applications are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Huang, B.R., Chan, H.W., Jou, S., Chen, G.Y., Kuo, H.A., and Song, W.J., Structure and field emission of graphene layers on top of silicon nanowire arrays, Appl. Surf. Sci., 2016, vol. 362, pp. 250–256.

    Article  CAS  Google Scholar 

  2. Galiotis, C., Frank, O., Koukaras, E.N., and Sfyris, D., Graphene mechanics: Current status and perspectives, Annu. Rev. Chem. Biomol. Eng., 2015, vol. 6, no. 1, pp. 121–140.

    Article  CAS  PubMed  Google Scholar 

  3. Zhuo, Q., Ma, Y., Gao, J., Zhang, P., **a, Y., Tian, Y., et al., Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature, Inorg. Chem., 2013, vol. 52, no. 6, pp. 3141–3147.

    Article  CAS  PubMed  Google Scholar 

  4. Wejrzanowski, T., Grybczuk, M., Chmielewski, M., Pietrzak, K., Kurzydlowski, K.J., and Strojny-Nedza, A., Thermal conductivity of metal-graphene composites, Mater. Des., 2016, vol. 99, pp. 163–173.

    Article  CAS  Google Scholar 

  5. Guo, R., Yue, W., Ren, Y., and Zhou, W., Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries, Mater. Res. Bull., 2016, vol. 73, pp. 102–110.

    Article  CAS  Google Scholar 

  6. Yaakub, J., Mohamad, N., Abd Razak, J., Lau, K.T., Abd Manaf, M.E., and Shueb, M.I., Dispersion stability of graphene nanoplatelets (GNPs) and noncovalent-functionalization of GNPs with chitosan in ethanol, Appl. Mech. Mater., 2015, vol. 761, pp. 447–451.

    Article  Google Scholar 

  7. Park, M., Song, K., Lee, T., Cha, J., Lyo, I., and Kim, B. S., Tailoring graphene nanosheets for highly improved dispersion stability and quantitative assessment in nonaqueous solvent, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 33, pp. 21595–21602.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, M., Shao, D., Lu, F., Sun, X., Sun, H., Hu, T., et al., ZnO/graphene nanocomposite fabricated by high energy ball milling with greatly enhanced lithium storage capability, Electrochem. Commun., 2013, vol. 34, pp. 312–315.

    Article  CAS  Google Scholar 

  9. Muthoosamy, K. and Manickam, S., State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives, Ultrason. Sonochem., 2017, vol. 39, pp. 478–493.

    Article  CAS  PubMed  Google Scholar 

  10. Gamil, M. and Ahmed, M.M., Investigating the thermo-mechanical properties of aluminum/graphene nano-platelets composites developed by friction stir processing, Int. J. Precis. Eng. Manuf., 2020, vol. 21, no. 8, pp. 1539–1546.

    Article  Google Scholar 

  11. Guo, Y., Yang, W., He, F., **e, C., Fan, J., Wu, J., and Zhang, K., Electrostatic interaction-based self-assembly of paraffin@graphene microcapsules with remarkable thermal conductivity for thermal energy storage, Fullerenes, Nanotubes Carbon Nanostruct., 2019, vol. 27, no. 2, pp. 120–127.

    Article  CAS  Google Scholar 

  12. Chen, W., Yan, L., and Bangal, P.R., Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon, 2010, vol. 48, no. 4, pp. 1146–1152.

    Article  CAS  Google Scholar 

  13. Han, T., Li, J., Zhao, N., and He, C., Microstructure and properties of copper coated graphene nanoplates reinforced Al matrix composites developed by low temperature ball milling, Carbon, 2020, vol. 159, pp. 311–323.

    Article  CAS  Google Scholar 

  14. Ye, J., Han, B.Q., Lee, Z., Ahn, B., Nutt, S.R., and Schoenung, J.M., A tri-modal aluminum based composite with super-high strength, Scr. Mater., 2005, vol. 53, no. 5, pp. 481–486.

    Article  CAS  Google Scholar 

  15. Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 2001, vol. 46, nos. 1–2, pp. 1–184.

    Article  CAS  Google Scholar 

  16. Lou, S.M., Qu, C.D., Guo, G.X., Ran, L.W., Liu, Y.Q., Zhang, P.P., et al., Effect of fabrication parameters on the performance of 0.5 wt % graphene nanoplates-reinforced aluminum composites, Materials, 2020, vol. 13, no. 16, p. 3483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng, Z., Zhang, X., Li, J., and Geng, L., High-content graphene nanoplatelet reinforced aluminum composites produced by ball milling and hot extrusion, Sci. China: Technol. Sci., 2020, vol. 63, no. 8, pp. 1426–1435.

    Article  Google Scholar 

  18. Bastwros, M., Kim, G.Y., Zhu, C., Zhang, K., Wang, S., Tang, X., and Wang, X., Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Composites, Part B, 2014, vol. 60, pp. 111–118.

    Article  CAS  Google Scholar 

  19. Yue, H., Yao, L., Gao, X., Zhang, S., Guo, E., Zhang, H., et al., Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites, J. Alloys Compd., 2017, vol. 691, pp. 755–762.

    Article  CAS  Google Scholar 

  20. Leon, V., Rodriguez, A.M., Prieto, P., Prato, M., and Vazquez, E., Exfoliation of graphite with triazine derivatives under ball-milling conditions: Preparation of few-layer graphene via selective noncovalent interactions, ACS Nano, 2014, vol. 8, no. 1, pp. 563–571.

    Article  CAS  PubMed  Google Scholar 

  21. Alinejad, B. and Mahmoodi, K., Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill, Funct. Mater. Lett., 2017, vol. 10, no. 4, p. 1750047.

    Article  CAS  Google Scholar 

  22. Show, K.Y., Mao, T., and Lee, D.J., Optimisation of sludge disruption by sonication, Water Res., 2007, vol. 41, no. 20, pp. 4741–4747.

    Article  CAS  PubMed  Google Scholar 

  23. Si, Y. and Samulski, E.T., Synthesis of water soluble graphene, Nano Lett., 2008, vol. 8, no. 6, pp. 1679–1682.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, B. and Chen, T., Study of ultrasonic dispersion of graphene nanoplatelets, Materials, 2019, vol. 12, no. 11, p. 1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cançado, L.G., Jorio, A., Ferreira, E.M., Stavale, F., Achete, C.A., Capaz, R.B., et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 2011, vol. 11, no. 8, pp. 3190–3196.

    Article  PubMed  Google Scholar 

  26. Zhang, W., He, W., and **g, X., Preparation of a stable graphene dispersion with high concentration by ultrasound, J. Phys. Chem. B, 2010, vol. 114, no. 32, pp. 10368–10373.

    Article  CAS  PubMed  Google Scholar 

  27. Khan, U., O’Neill, A., Lotya, M., De, S., and Coleman, J.N., High-concentration solvent exfoliation of graphene, Small, 2010, vol. 6, no. 7, pp. 864–871.

    Article  CAS  PubMed  Google Scholar 

  28. Yan, S.J., Dai, S.L., Zhang, X.Y., Yang, C., Hong, Q.H., Chen, J.Z., and Lin, Z.M., Investigating aluminum alloy reinforced by graphene nanoflakes, Mater. Sci. Eng., A, 2014, vol. 612, pp. 440–444.

    Article  CAS  Google Scholar 

  29. Dixit, S., Mahata, A., Mahapatra, D.R., Kailas, S.V., and Chattopadhyay, K., Multi-layer graphene reinforced aluminum–manufacturing of high strength composite by friction stir alloying, Composites, Part B, 2018, vol. 136, pp. 63–71.

  30. Yue, L., Pircheraghi, G., Monemian, S.A., and Manas-Zloczower, I., Epoxy composites with carbon nanotubes and graphene nanoplatelets–Dispersion and synergy effects, Carbon, 2014, vol. 78, pp. 268–278.

    Article  CAS  Google Scholar 

  31. Khodabakhshi, F., Arab, S.M., Švec, P., and Gerlich, A.P., Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening, Mater. Charact., 2017, vol. 132, pp. 92–107.

    Article  CAS  Google Scholar 

  32. Zhang, Z.W., Liu, Z.Y., **ao, B.L., Ni, D.R., and Ma, Z.Y., High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing, Carbon, 2018, vol. 135, pp. 215–223.

    Article  CAS  Google Scholar 

  33. Sharma, A., Sharma, V.M., and Paul, J., A comparative study on microstructural evolution and surface properties of graphene/CNT reinforced Al6061−SiC hybrid surface composite fabricated via friction stir processing, Trans. Nonferrous Met. Soc. China, 2019, vol. 29, no. 10, pp. 2005–2026.

    Article  CAS  Google Scholar 

  34. Venkatesan, S. and Xavior, A., Experimental investigation on stir and squeeze casted aluminum alloy composites reinforced with graphene, Mater. Res. Express, 2019, vol. 6, no. 12, p. 126542.

    Article  CAS  Google Scholar 

  35. Li, Z., Fan, G., Tan, Z., Guo, Q., **ong, D., Su, Y., et al., Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites, Nanotechnology, 2014, vol. 25, no. 32, p. 325601.

    Article  PubMed  Google Scholar 

  36. Ju, J.M., Wang, G., and Sim, K.H., Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties, J. Alloys Compd., 2017, vol. 704, pp. 585–592.

    Article  CAS  Google Scholar 

  37. Wu, Y., Zhan, K., Yang, Z., Sun, W., Zhao, B., Yan, Y., and Yang, J., Graphene oxide/Al composites with enhanced mechanical properties fabricated by simple electrostatic interaction and powder metallurgy, J. Alloys Compd., 2019, vol. 775, pp. 233–240.

    Article  CAS  Google Scholar 

  38. Sun, W., Zhan, K., Yang, Z., Zhao, R., Wang, T., Zhao, B., et al., Facile fabrication of GO/Al composites with improved dispersion of graphene and enhanced mechanical properties by Cu do** and powder metallurgy, J. Alloys Compd., 2020, vol. 815, p. 152465.

    Article  CAS  Google Scholar 

  39. Tang, Y., Hu, X., Liu, D., Guo, D., and Zhang, J., Effect of microwave treatment of graphite on the electrical conductivity and electrochemical properties of polyaniline/graphene oxide composites, Polymers, 2016, vol. 8, no. 11, p. 399.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Janowska, I., Chizari, K., Ersen, O., Zafeiratos, S., Soubane, D., Costa, V.D., et al., Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia, Nano Res., 2010, vol. 3, no. 2, pp. 126–137.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Ma.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan Zhang, Ma, P., Yang, Z. et al. Physical Dispersion Method and Mechanism of Graphene. J. Superhard Mater. 45, 186–191 (2023). https://doi.org/10.3103/S1063457623030218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457623030218

Keywords:

Navigation