Log in

Develo** a Microfluidic Device with an Integrated Electrode System for Measuring the Impedance Spectra of Cellular Models in Real Time

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A mathematical model is presented that describes the distribution of the potential and electric field strength in cells of a microfluidic device for culturing a cellular monolayer with built-in electrodes of different geometries. The design of the measuring cell and the geometry of the electrodes are selected by analyzing the results from calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Walter, F.R., Valkai, S., Kincses, A., et al., Sens. Actuators B, 2016, vol. 222, p. 1209.

    Article  Google Scholar 

  2. Odijk, M., van der Meer, A.D., Levner, D., et al., Lab Chip, 2015, vol. 15, p. 745.

    Google Scholar 

  3. Bezborodov, I.S., Polyakova, P.A., and Rusakova, N.E., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, p. 953.

    Article  Google Scholar 

  4. Nikulin, S.V., Knyazev, E.N., Poloznikov, A.A., Shilin, S.A., Gazizov, I.N., Zakharova, G.S., and Gerasimenko, T.N., Mol. Biol., 2018, vol. 52, p. 577.

    Article  Google Scholar 

  5. Kindeeva, O.V., Petrov, V.A., Gerasimenko, T.N., et al., RF Patent 2016152523, 2018.

  6. Gerasimenko, T.N., Kindeeva, O.V., Petrov, V.A., et al., Appl. Math. Modell., 2017, no. 52, p. 590.

  7. Heaney, M.B., Electrical Conductivity and Resistivity, Electrical Measurement, Signal Processing and Displays, Los Angeles: CRC, 2003.

    Google Scholar 

  8. van der Meer, A.D., Jung, K.H., van der Helm, M.W., et al., Lab Chip, 2015, vol. 15, p. 745.

    Article  Google Scholar 

  9. Konrad, A. and Graovac, M., IEEE Trans. Magn., 1996, vol. 32, p. 4329.

    Article  ADS  Google Scholar 

  10. Polyakov, P.A., Rusakova, N.E., and Samukhina, Yu.V., J. Electrost., 2015, vol. 77, p. 147.

    Article  Google Scholar 

  11. Binette, J.S., Garon, M., Savard, P., et al., J. Biomech. Eng., 2004, vol. 126, p. 475.

    Article  Google Scholar 

  12. Nikulin, S.V., Gerasimenko, T.N., Shilin, S.A., Gazizov, I.N., Kindeeva, O.V., and Sakharov, D.A., Bull. Exp. Biol. Med., 2019, vol. 166, p. 626.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-19-10597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Gerasimenko.

Additional information

Translated by D. Marinin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.A., Gerasimenko, T.N., Kindeeva, O.V. et al. Develo** a Microfluidic Device with an Integrated Electrode System for Measuring the Impedance Spectra of Cellular Models in Real Time. Bull. Russ. Acad. Sci. Phys. 84, 147–150 (2020). https://doi.org/10.3103/S1062873820020288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820020288

Navigation