Log in

Abstract

The combustion dynamics of Ni–Al twisted wires under (1.0–3.0) × 105 Ра of oxygen was studied by using rapid video filming and time-resolved spectrometry. Burning velocity and combustion temperature were found to grow with increasing oxygen pressure within the range 30–35 cm/s and 3125–3361 K, respectively. The formation of high-temperature (up to 4900 K) gas-dust phase around the reaction zone was observed. The present results are discussed in comparison with those previously obtained for combustion of the same twisted wires in argon and air. Out results shed new light on the kinetics of metals combustion and may turn useful in designing new energetic ingredients for solid rocket propulsion and bimetal Al–Ni nanopowders for energetic formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zare, A., Harriman, T.A., Lucca, D.A., Roncalli, S., Kosowski, B.M., Paravan, C., and DeLuca, L.T., Map** of aluminum particle dispersion in solid rocket fuel formulations, in Chemical Rocket Propulsion, Springer, 2017, pp. 673–688. https://doi.org/10.1007/978-3-319-27748-627

    Book  Google Scholar 

  2. Belal, H., Ignition and combustion behavior of mechanically activated Al–Mg particles in composite solid propellants, Combust. Flame, 2018, vol. 194, pp. 410–418. https://doi.org/10.1016/j.combustflame.2018.04.010

    Article  CAS  Google Scholar 

  3. Isert, S., Laneb, C.D., Gunduz, I.E., and Sona, S.F., Tailoring burning rates using reactive wires in composite solid rocket propellants, Proc. Combust. Inst., 2017, vol. 36, pp. 2283–2290. https://doi.org/10.1016/j.proci.2016.06.141

    Article  CAS  Google Scholar 

  4. Sundaram, D.S., Yang, V., and Zarko, V.E., Combustion of nano aluminum particles (Review), Combust., Explos. Shock Waves, 2015, vol. 51, pp.173–196. https://doi.org/10.1134/S0010508215020045

    Article  Google Scholar 

  5. Salamatov, V.G., Kirdyashkin, A.I., Kitler, V.D., and Gabbasov, R.M., Combustion of Ni–Al composite fibers, J. Phys.: Conf. Ser., 2018, vol. 1115(4), 042033. https://doi.org/10.1088/1742-6596/1115/4/042033

    Article  CAS  Google Scholar 

  6. DeLuca, L.T., Palmucci, I., Franzin, A., Weiser, V., Gettwert, V., Wingborg, N., and Sjöblom, M., New energetic ingredients for solid rocket propulsion, J. Solid Rocket Technol., 2016, vol. 39, no. 6, pp. 765–774. https://doi.org/10.7673/j.issn.1006-2793-2016.06.006

    Article  Google Scholar 

  7. Abraham, A., Nie, H., Schoenitz, M., Vorozhtsov, A.B., Lerner, M., Pervikov, A., Rodkevich, N., and Dreizin, E.L., Bimetal Al–Ni nano-powders for energetic formulations, Combust. Flame, 2016, vol. 173, pp. 179–186. https://doi.org/10.1016/j.combustflame.2016.08.015

    Article  CAS  Google Scholar 

  8. Gabbasov, R.M., Salamatov, V.G., Kirdyashkin, A.I., and Kitler, V.D., Combustion of bimetallic Ti/Al and Cu/Al fibers, J. Phys.: Conf. Ser., 2019, vol. 1214, no. 1, 012012. https://doi.org/10.1088/1742-6596/1214/1/012012

    Article  CAS  Google Scholar 

  9. NIST Atomic Spectra Data, 2018. physics.nist.gov/PhysRefData/ASD/lines-form.html͘

  10. Tarasenko, V.F., Maksimov, Yu.M., Kirdyashkin, A.I., Salamatov, V.G., Sosnin, E.A., and Gabbasov, R.M., Heterogeneous combustion wave as an X-ray source, Int. J. Eng. Sci. Invent., 2014, vol. 3, no. 10, pp. 6–12.

    Google Scholar 

  11. Zarko, V.E and Glotov, O.G., Formation of Al oxide particles in combustion of aluminized condensed systems, Sci. Tech. Energ. Mater., 2013, vol. 74, no.6, pp. 139–143.

    CAS  Google Scholar 

  12. Das, P. and Udaykumar, H.S., Sharp-interface calculations of the vaporization rate of reacting aluminum droplets in shocked flows, Int. J. Multiphase Flow, 2021, vol. 134, 103442. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103442

    Article  CAS  Google Scholar 

  13. Glorian, J., Gallier, S., and Catoire, L., On the role of heterogeneous reactions in aluminum combustion, Combust. Flame, 2016, vol.168, pp. 378–392. https://doi.org/10.1016/j.combustflame.2016.01.022

    Article  CAS  Google Scholar 

  14. Braconnier, A., Chauveau, C., Halter, F., and Gallier, S., Experimental investigation of the aluminum combustion in different O2 oxidizing mixtures: Effect of the diluent gases, Exp. Therm. Fluid Sci., 2020, vol. 117, 110110. https://doi.org/10.1016/j.expthermflusci.2020.110110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Salamatov.

Ethics declarations

This work was conducted in the framework of state-supported programs for ISMAN (theme 44.1) and Tomsk Scientific Center (project no. 0365-2019-0004).

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamatov, V.G., Kirdyashkin, A.I. Combustion of Ni–Al Twisted-Pair Wires in Oxygen. Int. J Self-Propag. High-Temp. Synth. 30, 257–260 (2021). https://doi.org/10.3103/S1061386221040105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221040105

Keywords:

Navigation