Log in

Synergy of Nanoparticles Photovoltaic Trap** and Manipulation from Suspension Layer on Ferroelectric Crystal Surface

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

We experimentally demonstrated that dielectrophoretic (DEP) forces of alternating photovoltaic fields generated near the surface of a photorefractive Fe-doped lithium niobate crystal by an optical Bessel beam with concentric ring structure and 532 nm wavelength exert the structuring of pure glycerin layer on the crystal surface and formation of stationary fluid concentric ring pattern. Taking into account this effect, the manipulation and trap** of the Ag nanoparticles suspended in the thin glycerin layer on the crystal surface with Bessel beam-induced photovoltaic field pattern have been studied. The formation of the clusters of Ag nanoparticles is observed. The localization of the Ag particles on the extremes of fluid lattice rings is detected. The trap** process can be described by a two-stage scenario. In the early stage, the stratification of glycerin thin layer under positive DEP force and localization of the fluid in the maxima of the photovoltaic field take place, thus forming the concentric ring fluid channels on the crystal surface. The flow of viscose glycerin in the radial directions also carries along the Ag nanoparticles. In the advanced stage, the repulsive DEP forces lead to the trap** of Ag particles on the crystal surface at the borderlines of fluid lattice rings. The generated photovoltaic space charge fields are long-living and, as a consequence, the formed patterns remain stable for a long time due to the high resistance of the crystal. The photovoltaic tweezers operating in an autonomous regime and allowing the trap**, manipulation and separation of micro-/nanoparticles are promising for photonics, integrated optics, nanoelectronics and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Pohl, H.A., Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge: Cambridge Univ. Press, 1978.

    Google Scholar 

  2. Jones, T.B., Electromechanics of Particles, Cambridge: Cambridge Univ. Press, 1995.

    Book  Google Scholar 

  3. Washizu, M., Suzuki, S., Kurosawa, O., Nishizaka, T., and Shinohara, T., Molecular dielectrophoresis of biomolecules, IEEE Trans. Ind. Appl., 1994, vol. 30, no. 4, pp. 835–843.

    Article  Google Scholar 

  4. Morgan, H., Hughes, M.P., and Green, N.G., Separation of submicron bioparticles by dielectrophoresis, Biophys. J., 1999, vol. 77, no. 1, pp. 516–525.

    Article  Google Scholar 

  5. Gascoyne, P.R.C. and Vykoukal, J., Particle separation by dielectrophoresis, Electrophoresis, 2002, vol. 23, no. 13, pp. 1973–1983.

    Article  Google Scholar 

  6. Hoeb, M., Radler, J.O., Klein, S., Stutzmann, M., and Brandt, M.S., Light induced dielectrophoretic manipulation of DNA, Biophys. J., 2007, vol. 93, pp. 1032–1038.

    Article  Google Scholar 

  7. Holzel, R. and Pethig, R., Protein dielectrophoresis: I. Status of experiments and an empirical theory, Micromachines, 2020, vol. 11, no. 5, 553-1-22.

  8. Ashkin, A., Acceleration and trap** of particles by radiation pressure, Phys. Rev. Lett. 1970, vol. 24, pp. 156–159.

    Article  Google Scholar 

  9. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., and Chu, S., Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 1986, vol. 11, pp. 288–290.

    Article  Google Scholar 

  10. Grier, D.G., A revolution in optical manipulation, Nature, 2003, vol. 424, no. 6950, pp. 810–816.

    Article  Google Scholar 

  11. Whitesides, G.M., The origin and the future of microfluidics, Nature, 2006, vol. 442, pp. 368–373.

    Article  Google Scholar 

  12. Jonas, A. and Zemanek, P., Light at work: the use of optical forces for particle manipulation, sorting and analysis, Electrophoresis, 2008, vol. 29, no. 24, pp. 4813–4851.

    Article  Google Scholar 

  13. Carrascosa, M., García-Cabañes, A., Jubera, M., Ramiro, J.B., and Agulló-López, F., LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects, Appl. Phys. Rev., 2015, vol. 2, 040605-1-16.

    Article  Google Scholar 

  14. García-Cabañes, A., Blázquez-Castro, A., Arizmendi, L., Agulló-López, F., and Carrascosa, M., Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate, Crystals, 2018, vol. 8, 65-1-15.

  15. Villarroel, J., Burgos, H., García-Cabañes, A., Carrascosa, M., Blázquez-Castro, A., and Agulló-López, F., Photovoltaic versus optical tweezers, Opt. Express, 2011, vol. 19, no. 24, pp. 24320–24330.

    Article  Google Scholar 

  16. Nee, I., Müller, M., Buse, K., and Krätzig, E., Role of iron in lithium-niobate crystals for the dark-storage time of holograms. J. Appl. Phys., 2000, vol. 88, pp. 4282–4286.

    Article  Google Scholar 

  17. Sarkisov, S.S., Curley, M.J., Kukhtarev, N.V., Fields, A., Adamovsky, G., Smith, C.C., and Moore, L.E., Holographic surface gratings in iron-doped lithium niobate, Appl. Phys. Lett., 2001, vol. 79, no. 7, pp. 901–903.

    Article  Google Scholar 

  18. Eggert, H.A., Kuhnert, F.Y, Buse, K., Adleman, J.R., and Psaltis, D., Trap** of dielectric particles with light-induced space-charge fields, Appl. Phys. Lett., 2007, vol. 90, 241909-1-4.

    Article  Google Scholar 

  19. Zhang, X., Wang, J., Tang, B., Tan, X., Rupp, R.A., Pan, L., Kong, Y., Sun, Q., and Xu, J., Optical trap** and manipulation of metallic micro/nanoparticles via photorefractive crystals, Opt. Express, 2009, vol. 17, pp. 9981–9988.

    Article  Google Scholar 

  20. Esseling, M., Glasener, S., Volonteri, F., and Denz, C., Opto-electric particle manipulation on a bismuth silicon oxide crystal, Appl. Phys. Lett., 2012, vol. 100, 161903-1-4.

    Article  Google Scholar 

  21. Esseling, M., Zaltron, A., Sada, C., and Denz C., Charge sensor and particle trap based on z-cut lithium niobate, Appl. Phys. Lett., 2013, vol. 103, 061115-1-4.

    Article  Google Scholar 

  22. Muñoz-Martínez, J.F., Elvira, I., Jubera, M., García-Cabañes, A., Ramiro, J.B., Arregui, C., and Carrascosa, M., Efficient photo-induced dielectrophoretic particle trap** on Fe:LiNbO3 for arbitrary two dimensional patterning, Opt. Mater. Express, 2015, vol. 5, no. 5, pp. 1137–1146.

    Article  Google Scholar 

  23. Gazzetto, M., Nava, G., Zaltron, A., Cristiani, I., Sada, C., and Minzioni, P., Numerical and experimental study of optoelectronic trap** on iron-doped lithium niobate substrate, Crystals, 2016, vol. 6, 123-1-11.

  24. Esseling, M., Holtmann, F., Woerdemann, M., and Denz, C., Two-dimensional dielectrophoretic particle trap** in a hybrid crystal/PDMS-system, Opt. Express, 2010, vol. 18, pp. 17404–17411.

    Article  Google Scholar 

  25. Burgos, H., Jubera, M., Villarroel, J., García-Cabañes, A., Agulló-López, F., and Carrascosa, M., Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3, Opt. Mater., 2013, vol. 35, pp. 1700–1705.

    Article  Google Scholar 

  26. Arregui, C., Ramiro, J.B., Alcázar, Á., Méndez, Á., Burgos, H., García-Cabañes, Á., and Carrascosa, M., Optoelectronic tweezers under arbitrary illumination patterns: Theoretical simulations and comparison to experiment. Optics Express, 2014, vol. 22, no. 23, pp. 29099–29110.

    Article  Google Scholar 

  27. Matarrubia, J., García-Cabañes, A., Plaza, J.L., Agulló-López, F., and Carrascosa, M., Optimization of particle trap** and patterning via photovoltaic tweezers: Role of light modulation and particle size. J. Phys. D, 2014, vol. 47, 265101-1-9.

    Article  Google Scholar 

  28. Muñoz-Martínez, J.F., Ramiro, J.B., Alcázar, Á., García-Cabañes, Á., Carrascosa, M., Electrophoretic versus dielecreophoretic nanoparticle patterning using optoelectronic tweezers, Phys. Rev. Appl., 2017, vol. 7, 064027-1-9.

    Article  Google Scholar 

  29. Blázquez-Castro, A., Stockert, J.C., López-Arias, B, Juarranz, A, Agulló-López, F, García-Cabañes, A, and Carrascosa, M., Tumor cell death by a bulk photovoltaic effect in LiNbO3:Fe under visible light irradiation, Photochem. Photobiol. Sci., 2011, vol. 10, pp. 956–963.

    Article  Google Scholar 

  30. Miccio, L., Marchesano, V., Mugnano, M., Grilli, S., and Ferraro, P., Light induced DEP for immobilizing and orienting Escherichia coli bacteria, Opt. Las. Eng., 2016, vol. 76, pp. 34–39.

    Article  Google Scholar 

  31. Carrascosa, M., García-Cabañes, A., Jubera M., Elvira, I., Burgos, H., Bella, J.L., Agulló-López, F., Muñoz-Martínez, J.F., and Alcázar, A. Photovoltaic tweezers: Emergent tool for applications to in nano- and bio-technology, Proc. SPIE, 2015, vol. 9529, 95290Q-1-7.

    Google Scholar 

  32. Blázquez-Castro, A., García-Cabañes, and A., Carrascosa, M., Biological applications of ferroelectric materials, Appl. Phys. Rev., 2018, vol. 5, 041101-1-19.

    Article  Google Scholar 

  33. Tsarukyan, L.M., Badalyan, A.M., Hovsepyan, R.K., and Drampyan, R.Kh., Trap** of dielectric microparticles on iron doped lithium niobate crystal by optical Bessel beam induced space-charge field, Proc. SPIE, 2020, vol. 11367, 113671B-1-9.

  34. Tsarukyan, L., Badalyan, A., Hovsepyan, R., and Drampyan, R., Bessel beam approach for photovoltaic trap** of micro- and nanoparticles on Fe-doped lithium niobate crystal, Opt. Laser Technol., 2021, vol. 139, 106949-1-9.

    Article  Google Scholar 

  35. Sebastián-Vicente, C., Muñoz-Cortés, E., García-Cabañes, A., Agulló-López, F., and Carrascosa, M., Real-time operation of photovoltaic optoelectronic tweezers: New strategies for massive nano-object manipulation and reconfigurable patterning, Part. Part. Syst. Charact., 2019, vol. 36, no. 9, 1900233-1-8.

  36. Sebastián-Vicente, C., Remacha-Sanz, P., Elizechea-López, E., García-Cabañes, A., and Carrascosa, M. Combinatorial nanoparticle patterns assembled by photovoltaic optoelectronic tweezers, Appl. Phys. Lett., 2022, vol. 121, 121104.

    Article  Google Scholar 

  37. Sebastián-Vicente, C., García-Cabañes, A., Agulló-López, F., and Carrascosa, M., Light and Thermally Induced Charge Transfer and Ejection of Micro-/Nanoparticles from Ferroelectric Crystal Surfaces, Adv. Electron. Mater., 2022, vol. 8, 2100761.

    Article  Google Scholar 

  38. Miccio, L., Paturzo, M., Finizio, A., and Ferraro, P., Light induced patterning of poly (dimethylsiloxane) microstructures, Optics Express, 2010, vol. 18, pp. 10947–10955.

    Article  Google Scholar 

  39. Miccio, L., Memmolo, P., Grilli, S., and Ferraro, P., All-optical microfluidic chips for reconfigurable dielectrophoretic trap** through SLM light induced patterning, Lab Chip., 2012, vol. 12, pp. 4449–4454.

    Article  Google Scholar 

  40. Haus, H.A. and Melcher, J.R., Electromagnetic Fields and Energy, Englewood Cliffs, NJ: Prentice-Hall, 1989.

    Google Scholar 

  41. Glass, A.M., von der Linde, D., and Negran, T. J., High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3, Appl. Phys. Lett., 1974, vol. 25, pp. 233–235.

    Article  Google Scholar 

  42. Günter, P. and Huignard, J.P., Photorefractive Materials and Their Applications III, Springer Ser.: Optical Sciences, New York, 2007, vol. 115.

    Book  Google Scholar 

  43. Devaux, F., Safioui, J., Chauvet, M., and Passier, R., Two-photoactive-center model applied to photorefractive self-focusing in LiNbO3, Phys. Rev. A, 2010, vol. 81, pp. 013825–013830.

    Article  Google Scholar 

  44. Durnin, J., Mikely, J.J., Jr. and Eberly, J.H., Diffraction-free beams, Phys. Rev. Lett., 1987, vol. 58, pp. 1499–1501.

    Article  Google Scholar 

  45. Rose, P., Boguslawski, M., and Denz, C., Nonlinear lattice structures based on families of complex nondiffracting beams, New J. Phys., 2012, vol. 14, 033018-1-11.

    Article  Google Scholar 

  46. Diebel, F., Boguslawski, M., Dadalyan, T., Drampyan, R., and Denz, C., Controlled soliton formation in tailored Bessel photonic lattices, Opt. Express, 2016, vol. 24, pp. 12933–12940.

    Article  Google Scholar 

  47. Manigo, J.P. and Guerrero, R.A., Self-imaging, self-healing beams generated by photorefractive volume holography, Opt. Eng., 2015, vol. 54, 104113-1-6.

    Article  Google Scholar 

  48. Shafer, F.P., On some properties of axicons, Appl. Phys. B, 1986, vol. 39, pp. 1–8.

    Article  Google Scholar 

  49. Badalyan, A., Hovsepyan, R., Mantashyan, P., Mekhitaryan, V., and Drampyan, R., Bessel standing wave technique for optical induction of complex refractive lattice structures in photorefractive materials, J. Mod. Opt., 2013, vol. 60, no. 8, pp. 617–628.

    Article  Google Scholar 

  50. Badalyan, A., Hovsepyan, R., Mekhitaryan, V., Mantashyan, P., and Drampyan, R., Nondestructive readout of holograms recorded by Bessel beam technique in LiNbO3:Fe and LiNbO3:Fe:Cu crystals, Eur. Phys. J. D, 2014, vol. 68, 82-1-8.

  51. Durnin, J., Micely, J.J., Jr., and Eberly, J.H., Comparison of Bessel and Gaussian beams, Opt. Lett., 1987, vol. 13, pp. 79–80.

    Article  Google Scholar 

  52. Serano, E., López, V., Carrascosa, M, and Agulló-López, F., Steady-state refractive gratings in LiNbO3 for strong light modulation depth, IEEE, J. Quantum Electron., 1994, vol. 30, 875–880.

    Article  Google Scholar 

  53. Bledowski, A., Otten, J., and Ringhofer, K.H., Photorefractive hologram writing with modulation 1, Opt. Lett., 1991, vol. 16, no. 9, pp. 672–674.

    Article  Google Scholar 

  54. Johansen, P.M., Photorefractive space charge field formation: linear and nonlinear effects, J. Opt. Pure Appl. Opt., 2003, vol. 5, no. 6, pp. S398–S415.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Edvard Kokanyan for providing the lithium niobate crystals in the framework of the International Science and Technology Center Grant, Project A-2130. The authors express their gratitude to Dr. Marina Derdzyan for spectral measurements and Dr. Ruben Hovsepyan for discussions.

Funding

The work was supported by the International Science and Technology Center Grant, project no. A-2130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusine Tsarukyan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lusine Tsarukyan, Badalyan, A. & Drampyan, R. Synergy of Nanoparticles Photovoltaic Trap** and Manipulation from Suspension Layer on Ferroelectric Crystal Surface. Opt. Mem. Neural Networks 32 (Suppl 3), S369–S383 (2023). https://doi.org/10.3103/S1060992X23070202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X23070202

Keywords:

Navigation