Log in

Decoding Optical Spectra with Neural Networks to Monitor the Elimination of Carbon Nanoagents from the Body

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

This study is devoted to the problem of controlling the removal of carbon nanocomplexes from the body via neural networks. We model the renal excretion of nanocomplexes based on carbon dots (CD) that deliver anticancer drug—doxorubicin (Dox). Optical absorption and fluorescence spectra of nanocomposites containing CD and Dox in urine were used to model the process of elimination of nanocomposites components from the body. These spectral data were decoded with multilayer perceptrons to determine CD and Dox concentrations in the studied samples. To increase the accuracy of monitoring the excretion of CD and Dox with urine, principal component analysis was additionally used. Our sensing technique allows controlling the excretion of CD and Dox with 43.8 and 20.9 µg/L mean absolute errors, which are comparable to similar values of analogues. However, the proposed method can be used for simultaneous rapid monitoring of numerous substances, while most CD-based sensors in literature are calibrated to measure only one or two parameters. The obtained results have great value for the analysis of the parameters of nanostructured objects in microvolumes, particularly for monitoring in microfluidic devices. Combination of microfluidics and the use of machine learning methods shows a future innovative approach for conduction massive biological material study and implement smart decision making systems in support of clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Alsuliman, T., Humaidan, D., and Sliman, L., Machine learning and artificial intelligence in the service of medicine: Necessity or potentiality?, Curr. Res. Transl. Med., 2020, vol. 68, pp. 245–251.

    Article  Google Scholar 

  2. Noorbakhsh, J., Chandok, H., Karuturi, R.K.M., and George, J., Machine learning in biology and medicine, Adv. Mol. Pathol., 2019, vol. 2, pp. 143–152.

    Article  Google Scholar 

  3. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., and Zdeborová, L., Machine learning and the physical sciences, Rev. Mod. Phys., 2019, vol. 91, pp. 045002.

    Article  Google Scholar 

  4. Gerdova, I., Dolenko, S., Dolenko, T., Churina, I., and Fadeev, V., New opportunity solutions to inverse problems in laser spectroscopy involving artificial neural networks, Izv. Akad. Nauk, Ser. Fiz., 2002, vol. 66, pp. 1116–1124.

    Google Scholar 

  5. Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., and Walsh, A., Machine learning for molecular and materials science, Nature, 2018, vol. 559, pp. 547–555.

    Article  Google Scholar 

  6. Vandenginste, B.G.M., Massart, D.L., Buydens, L.M.C., De Jong, S., Lewi, P.J., and Smeyers-Verbeke, J., Handbook of Chemometrics and Qualimetrics, Amsterdam, Netherlands: Elsevier, 1998.

    Google Scholar 

  7. Dolenko, S.A., Dolenko, T.A., Fadeev, V.V., Gerdova, I.V., and Kompitsas, M., Time-resolved fluorimetry of two-fluorophore organic systems using artificial Neural Networks, Opt. Commun., 2002, vol. 213, pp. 309–324.

    Article  Google Scholar 

  8. Dolenko, T.A., Burikov, S.A., Vervald, A.M., Vlasov, I.I., Dolenko, S.A., Laptinskiy, K.A., Rosenholm, J.M., and Shenderova, O.A., Use of neural network algorithms for optical imaging of fluorescent biomarkers based on carbon nanoparticles, JBO, 2014, vol. 19, pp. 117007.

    Article  Google Scholar 

  9. Barth, C. and Becker, C., Machine learning classification for field distributions of photonic modes, Commun. Phys., 2018, vol. 1, pp. 1–11.

    Article  Google Scholar 

  10. Närhi, M., Salmela, L., Toivonen, J., Billet, C., Dudley, J.M., and Genty, G., Machine learning analysis of extreme events in optical fibre modulation instability, Nat. Commun., 2018, vol. 9, pp. 1–11.

    Article  Google Scholar 

  11. Zakharov, V.E. and Ostrovsky, L.A., Modulation instability: The beginning, Physica D, 2009, vol. 238, pp. 540–548.

    Article  MathSciNet  Google Scholar 

  12. Sumpter, B.G. and Noid, D.W., Potential energy surfaces for macromolecules. a neural network technique, Chem. Phys. Lett., 1992, vol. 192, pp. 455–462.

    Article  Google Scholar 

  13. Lin, X., Si, Z., Fu, W., et al., Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy, Nano Res., 2018, vol. 11, pp. 6316–6324.

    Article  Google Scholar 

  14. Tanaka, K., Hachiya, K., Zhang, W., Matsuda, K., and Miyauchi, Y., Machine-learning analysis to predict the exciton valley polarization landscape of 2D semiconductors, ACS Nano, 2019, vol. 13, pp. 12687–12693.

    Article  Google Scholar 

  15. He, C., Wu, X., Zhou, J., Chen, Y., and Ye, J., Raman optical identification of renal cell carcinoma via machine learning, Spectrochim. Acta, Part A, 2021, vol. 252, pp. 119520.

    Article  Google Scholar 

  16. **, E.H., Lee, D., Bae, J.H., Kang, H.Y., Kwak, M.S., Seo, J.Y., and Kim, J.S., Improved accuracy in optical diagnosis of colorectal polyps using convolutional neural networks with visual explanations, Gastroenterology, 2020, vol. 158, pp. 2169–2179.

    Article  Google Scholar 

  17. Sunny, S., Baby, A., James, B.L., Balaji, D., NV, A., Rana, M.H., and Kuriakose, M.A., A smart tele-cytology point-of-care platform for oral cancer screening, PLoS One, 2019, vol. 14, pp. e0224885.

    Article  Google Scholar 

  18. Ullah, R., Khan, S., Ali, H., Chaudhary, I.I., Bilal, M., and Ahmad, I., A comparative study of machine learning classifiers for risk prediction of asthma disease, Photodiagn. Photodyn. Ther., 2019, vol. 28, pp. 292–296.

    Article  Google Scholar 

  19. Wang, X., Wang, Z., Weng, J., Wen, C., Chen, H., and Wang, X., A new effective machine learning framework for sepsis diagnosis, IEEE Access., 2018, vol. 6, pp. 48300–48310.

    Article  Google Scholar 

  20. Arima, A., Tsutsui, M., Washio, T., Baba, Y., and Kawai, T., Solid-state nanopore platform integrated with machine learning for digital diagnosis of virus infection, Anal. Chem., 2020, vol. 93, pp. 215-227.

    Article  Google Scholar 

  21. Peiffer-Smadja, N., Rawson, T.M., Ahmad, R., Buchard, A., Georgiou, P., Lescure, F.X., Birgand, G., and Holmes, A.H., Machine learning for clinical decision support in infectious diseases: a narrative review of current applications, Clin. Microbiol. Infect., 2020, vol. 26, pp. 584–595.

    Article  Google Scholar 

  22. **tao, X., Liming, Y., Yufei, L., Chunyan, L., and Han, C., Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR), Spectrochim. Acta, Part A, 2017, vol. 179, pp. 250–254.

    Article  Google Scholar 

  23. Guevara, E., Torres-Galván, J.C., Ramírez-Elías, M.G., Luevano-Contreras, C., and González, F.J., Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools, Biomed. Opt. Express., 2018, vol. 9, pp. 4998–5010.

    Article  Google Scholar 

  24. Ellis, D.I., Broadhurst, D., Kell, D.B., Rowland, J.J., and Goodacre, R., Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning, Appl. Environ. Microbiol., 2002, vol. 68, pp. 2822–2828.

    Article  Google Scholar 

  25. Wu, A.C.-Y. and Rifkin, S.A., Aro: A machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images, BMC Bioinf., 2015, vol. 16, pp. 1–8.

    Article  Google Scholar 

  26. Dolenko, T.A., Burikov, S.A., Vervald, E.N., Efitorov, A.O., Laptinskiy, K.A., Sarmanova, O.E., and Dolenko, S.A., Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks, Laser Phys., 2017, vol. 27, pp. 025203.

    Article  Google Scholar 

  27. Sarmanova, O.E., Laptinskiy, K.A., Khmeleva, M.Y., Burikov, S.A., Dolenko, S.A., Tomskaya, A.E., and Dolenko, T.A., Development of the fluorescent carbon nanosensor for pH and temperature of liquid media with artificial neural networks, Spectrochim. Acta, Part A, 2021, vol. 258, pp. 119861.

    Article  Google Scholar 

  28. Ghosh, A., Roth, D.J., Nicholls, L.H., Wardley, W.P., Zayats, A.V., and Podolskiy, V.A., Machine learning-based diffractive image analysis with subwavelength resolution, ACS Photonics, 2021, vol. 8, pp. 1448–1456.

    Article  Google Scholar 

  29. Sarmanova, O.E., Laptinskiy, K.A., Burikov, S.A., Isaev, I.V., Dolenko, T.A., and Dolenko, S.A., Determination of heavy metal ions concentration in aqueous solutions using adaptive data analysis methods, Proc. SPIE, 2020, vol. 11354, pp. 113540L-1–113540L-9.

  30. Valensise, C.M., Giuseppi, A., Vernuccio, F., De la Cadena, A., Cerullo, G., and Polli, D., Removing non-resonant background from CARS spectra via deep learning, APL Photonics, 2020, vol. 5, pp. 061305.

    Article  Google Scholar 

  31. Brunel, B., Alsamad, F., and Piot, O., Toward automated machine learning in vibrational spectroscopy: Use and settings of genetic algorithms for pre-processing and regression optimization, Chemometr. Intell. Lab., 2021, vol. 219, pp. 104444.

    Article  Google Scholar 

  32. Helin, R., Indahl, U.G., Tomic, O., and Liland, K.H., On the possible benefits of deep learning for spectral preprocessing, J. Chemom., 2022, vol. 36, pp. e3374.

    Article  Google Scholar 

  33. Rizzuto, V., Mencattini, A., Álvarez-González, B., Di Giuseppe, D., Martinelli, E., Beneitez-Pastor, D., Mañú-Pereira, M. del M., Lopez-Martinez, M.J., and Samitier, J., Combining microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia, Sci. Rep., 2021, vol. 11, pp. 1–12.

    Article  Google Scholar 

  34. Soldatov, M.A., Butova, V.V., Pashkov, D., Butakova, M.A., Medvedev, P.V., Chernov, A.V., and Soldatov, A.V., Self-driving laboratories for development of new functional materials and optimizing known reactions, Nanomaterials, 2021, vol. 11, pp. 619.

    Article  Google Scholar 

  35. Lengert, E.V., Trushina, D.B., Soldatov, M., and Ermakov, A.V., Microfluidic synthesis and analysis of bioinspired structures based on CaCO3 for potential applications as drug delivery carriers, Pharmaceutics, 2022, vol. 14, pp. 139.

    Article  Google Scholar 

  36. Kingma, D.P. and Ba, J., Adam: A Method for Stochastic Optimization, ar**v preprint 2014, ar**v:1412.6980, pp. 1–15.

  37. Géron, A., Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems, 2nd ed., Sebastopol, USA: O’Reilly Media, 2019, pp. 219–221.

    Google Scholar 

  38. Yang, M., Yan, Y., Liu, E., Hu, X., Hao, H., and Fan, J., Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect, Opt. Mater., 2021, vol. 11, pp. 110743.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-1363, contract no. 210EΠ from 29 November 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Sarmanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmanova, O., Laptinskiy, K., Burikov, S. et al. Decoding Optical Spectra with Neural Networks to Monitor the Elimination of Carbon Nanoagents from the Body. Opt. Mem. Neural Networks 31, 256–265 (2022). https://doi.org/10.3103/S1060992X22030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X22030109

Keywords:

Navigation