Log in

Improvement of Converter Steelmaking of Cold-Rolled Non Grain-Oriented Electrical Low Carbon Steel. Report 1

  • Published:
Steel in Translation Aims and scope

Abstract

The possibilities of achieving a low carbon content (less than 0.002%) under the conditions of converter production of cold-rolled non grain-oriented electrical steel of the 4th alloy steel group (Si > 2.9% and Al > 1.0%) are studied. With the results of the analysis of the change in the carbon content after decarburization on the circulation degassing plant of the converter shop no. 1 (CDP CS-1), laboratory studies and theoretical calculations are presented. The possibility of achieving a carbon content of less than 0.002% wt. after decarburization in the CDP CS-1 is confirmed. The main technological factors influencing the carbon content in the entire technological chain of production in the NLMK’s CS-1 is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Gushchin, I.V., Morozov, A.V., Chernikov, O.V., Degtev, S.S., Barybin, D.V., Udovenko, N.P., Kosolapov, S.V., Kryukova, N.V., Yusupov, V.S., and Cheglov, A.E., Modern requirements to production of energy-effective disordered electrical steel, Steel Transl., 2022, vol. 52, no. 1, pp. 101–112. https://doi.org/10.3103/S0967091222010119

    Article  Google Scholar 

  2. Mindlin, B.I., Nastich, V.P., and Cheglov, A.E., Izotropnaya elektrotekhnicheskaya stal’ (Isotropic Electrical Steel), Moscow: Intermet Inzhiniring, 2006.

  3. Sukhov, A.I. and Korotchenkova, A.V., Features of the production of isotropic electrical steel with very low specific magnetic losses, Sovrem. Mater., Tekh. Tekhnol., 2019, no. 4, pp. 172–180.

  4. Komolova, O.A. and Grigorovich, K.V., Development of mathematical model of decarburization of stee on an RH vacuum degasser, Chistaya stal’. Ot rudy do prokata—2020. Sb. statei i mezhdunar. konf. (Pure Steel: From Ore to Rolled Products: Proc. Int. Conf.), Moscow, 2020, pp. 120–126.

  5. Emel’yanov, S.S., Sebyakin, S.V., Dobrodon, A.V., et al., Research, developemnt, and improvement of equipment and technology of vacuum steel processing at OAO NLMK, Elektrometallurgiya, 2007, no. 4, pp. 24–28.

  6. Yavoiskii, V.I., Levin, S.L., Baptizmanskii, V.I., et al., Metallurgiya stali (Steel Metallurgy), Moscow: Metallurgiya, 1973.

  7. Kobayashi, H. and Donahue, F., Introduction to operation of a device for blasting steel with oxygen above the setup of circulation degassing in the Great Lakes branch of National Steel firma, Nov. Chern. Metall. Rubezhom, 1996, no. 3, pp. 55–56.

  8. Fomenko, V.A., Theoretical and technological principles of deep decarburization of steel in large-volume ladleman vacuum degassers, Cand. Sci. (Eng.) Dissertation, Moscow, 2005.

  9. Sumida, N., Fujii, T., Oguchi, Y., Morishita, H., Yoshimura, K., and Sudo, F., Production of ultra-low carbon steel by combined process of bottom-blown converter and RH degasser, Kawasaki Steel Technical Report, 1983, no. 8.

  10. Sinel’nikov, V.A. and Ivanov, B.S., Vyplavka nizkouglerodistoi elektrotekhnicheskoi stali (Production of Low-Carbon Electrical Steel), Moscow: Metallurgiya, 1991.

  11. Wang, M., Guo, J., Li, X., Yao, Ch., and Bao, Ya., Effect of oxidizing slag on the decarburization of ultra-low-carbon steel during the ruhrstahl-heraeus vacuum process, Vacuum, 2021, vol. 185, p. 109984. https://doi.org/10.1016/j.vacuum.2020.109984

    Article  CAS  Google Scholar 

  12. Novik, L.M., Samarin, A.M., Lukutin, A.I., et al., UK Patent no. 1293411, Byull. Izobret., 1971, no. 29.

  13. Sebyakin, S.V., Research and improvement of equipment and technology for vacuum processing of steel, Cand. Sci. (Eng.) Dissertation, Lipetsk, 2009.

  14. Makarov, M.A., Aleksandrov, A.A., and Dashevskii, V.Ya., Deep decarburization of steel, Russ. Metall., 2006, vol. 2006, no. 3, pp. 189–192. https://doi.org/10.1134/S0036029506030013

    Article  Google Scholar 

  15. Stomakhin, A.Ya., Baldaev, B.Ya., Zaitsev, D.V., and Chernykh, A.A., Intensifying the vacuum decarburization of melt when smelting IF steel, Steel Transl., 2002, vol. 32, no. 9, pp. 37–43.

    Google Scholar 

  16. Semin, A.E., Dephosphorization and deep decarburization of melts under conditions of low oxidation, Doctoral Sci. (Eng.) Dissertation, Moscow, 1996.

  17. Alekseev, L.V., Iskakov, I.F., Valiakhmetov, A.Kh., et al., Approach for producing low-carbon steel, RF Patent no. 2575901, Byull. Izobret., 2016, no. 5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Yusupov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kolemesin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degtev, S.S., Lavrov, V.A., Saitgaraev, A.A. et al. Improvement of Converter Steelmaking of Cold-Rolled Non Grain-Oriented Electrical Low Carbon Steel. Report 1. Steel Transl. 52, 961–969 (2022). https://doi.org/10.3103/S0967091222100035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222100035

Keywords:

Navigation