Log in

Kenekesir Earthquake of October 12, 2015 (MW = 5.2) in the Western Kopet Dag: Aftershock Series and Strong Ground Motions

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The article presents the results of studying the source of the 2015 Kenekesir earthquake and its aftershock sequence. The earthquake occurred in the Archman–Nokhur tectonic node zone, where the northwest orientation of the Central Kopet Dag faults changes to the northeast orientation of the Western Kopet Dag faults. The actual rupture plane at the Kenekesir earthquake was determined from the dataset of the focal mechanism, three-dimensional orientation of the aftershock cluster, orientation of the nearest faults, and first isoseismals of previous earthquakes. The rupture plane strikes southwest and dips to the northwest. The displacement type is oblique slip with equal normal-fault and left-lateral strike-slip components. The aftershock series lasted 186 days and consisted of 1249 aftershocks of the representative level (KR ≥ 5.6). At its initial stage, the 11-day period of regular development of the aftershock process is identified, when the Omori law is fulfilled with the highest correlation coefficient and aftershock attenuation parameter p = 1.35. Then, the aftershock process assumes a pulsating character, passing to the stage of stress relaxation in the medium. Accelerograms and velocigrams of the Kenekesir earthquake and its aftershocks are of undoubted interest for assessing the seismic hazard in this area. It was found that the instrumental intensities determined from the velocity (IPGV) and seismic wave power (IPGA ⋅ PGV) agree the best with the regional macroseismic field equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Annaorazova, T.A., Golinskii, G.L., Rakhimov, A.R., and Smirnova, N.P., Earthquakes of Kopetdag, Zemletryaseniya v SSSR v 1984 godu (Earthquakes in SSSR in 1984), Moscow: Nauka, 1987, pp. 44–51.

  2. Aptikaev, F.F., Instrumental’naya shkala seismicheskoi intensivnosti (Instrumental Scale of Seismic Intensity), Moscow: Nauka i Obrazovanie, 2012.

  3. Aref’ev, S.S., Foreshocks, aftershocks, and swarms of earthquakes, Izv., Phys. Solid Earth, 2002, vol. 38, no. 1, pp. 55–71.

    Google Scholar 

  4. Aref’ev, S.S., Bykova, V.V., and Vakarchuk, R.N., Model of hypocenter of the September 7, 2009 earthquake in Central Caucasus, Geofiz. Issled., 2011, vol. 12, no. 1, pp. 33–46.

    Google Scholar 

  5. Berberian, M., Historical seismicity (pre 1900) map of Iran. Scale 1 : 5 000 000, Contribution to the Seismotectonics of Iran, Part III. Geological Survey of Iran, Tectonic-Seismotectonic Research Section, 1977.

  6. Chu, D. and Gordon, R.G., Current plate motions across the Red Sea, Geophys. J. Int., 1998, vol. 135, no. 2, pp. 313–328. https://doi.org/10.1046/j.1365-246X.1998.00658.x

    Article  Google Scholar 

  7. DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 1994, vol. 21, no. 20, pp. 2191–2194.  https://doi.org/10.1029/94GL02118

    Article  Google Scholar 

  8. Djadkov, P.G. and Mikheeva, A.V., The EEDB – Expert earthquake database for seismic-geodynamic research, Bull. Novosibirsk ICMMG. Math. Mod. Geophys., 2010, no. 13, pp. 15–30.

  9. Emanov, A.F., Emanov, A.A., Filina, A.G., Leskova, E.V., Kolesnikov, Yu.I., and Rudakov, A.D., The common and individual in development of aftershocks of largest earthquakes in the Altai-Sayan mountain region, Fiz. Mezomekh., 2006, vol. 9, no. 1, pp. 33–44.

    Google Scholar 

  10. Fedotov, S.A., Chernyshev, S.D., Chernysheva, G.V., and Vikulin, A.V., Refinement of boundaries of earthquakes with M ≥ 73/4, properties of seismic cycle, and long-term seismic prediction for Kuril–Kamchatka Arc, Vulkanol. Seismol., 1980, no. 6, pp. 52–67.

  11. Gaipov, B.N., Vorontsova, E.S., Golinskii, G.L., Muradov, Ch.M., Petrova, N.V., Rakhimov, A.R., and Abaseev, S.S., National map of seismic zoning of Turkmenistan, Materialy Mezhdunarodnoi Konferentsii, posvyashchennoi 50-letiyu Ashkhabadskogo zemletryaseniya 1948 g (Materials of Int. Conf. Devoted to 50th Anniversary of the 1948 Ashgabat Earthquake), Ashgabat: Ylym, 1948.

  12. Gaipov, B.N., Petrova, N.V., Golinskii, G.L., Rakhimov, A.R., and Saryeva, G.Ch., Kopetdag, Zemletryaseniya Severnoi Evrazii v 2000 godu (Earthquakes of Northern Eurasia in 2000), Moscow: Geophiz. Sluzhba, Ross. Akad. Nauk, 2006, pp. 95–109.

  13. Gardner, J.K. and Knopoff, L., Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bull. Seismol. Soc. Am., 1974, vol. 64, no. 5, pp. 1363–1367.  https://doi.org/10.1785/BSSA0640051363

    Article  Google Scholar 

  14. Golinskii, G.L., Equations of macroseismic field of earthquakes in Turkmenia, Izv. Akad. Nauk Turkm. SSR, Ser. Fiz.-Tekh., Khim. Geol. Nauk, 1977, no. 1, pp. 69–74.

  15. Golinskii, G.L., Muradov, Ch.M., and Rakhimov, A.R., The October 16, 1994 Kenekesir earthquake, Zemletryaseniya Severnoi Evrazii v 1994 godu (Earthquakes of Northern Eurasia in 1994), Moscow: Geofiz. Sluzhba, Ross. Akad. Nauk, 2000, pp. 147–151.

    Google Scholar 

  16. Golinskii, G.L., Muradov, Ch.M., and Rakhimov, A.R., The October 21, 1994 Kenekesir earthquake, Zemletryaseniya Severnoi Evrazii v 1994 godu (Earthquakes of Northern Eurasia in 1994), Moscow: Geofiz. Sluzhba, Ross. Akad. Nauk, 2000, pp. 151–163.

    Google Scholar 

  17. GOST R (State Standard) 57546–2017: Earthquakes. Seismic Intensity Scale, 2017.

  18. Guglielmi, A.V., Zavyalov, A.D., and Zotov, O.D., A project for an atlas of aftershocks following large earthquakes, J. Volcanol. Seismol., 2019, vol. 13, no. 6, pp. 415–419.  https://doi.org/10.1134/S0742046319060034

    Article  Google Scholar 

  19. Gushchenko, O.I., Mostryukov, A.O., and Petrov, V.A., Structure of the field of modern regional stresses of seismically active zones of Earth’s crust in the eastern part of Mediterranean moving belt, Dokl. Akad. Nauk SSSR, 1990, vol. 312, no. 4, pp. 830–835.

    Google Scholar 

  20. International Seismological Centre. On-Line Bulletin, 2021.

  21. Jackson, J., Priestley, K., Allen, M., and Berberian, M., Active tectonics of the South Caspian Basin, Geophys. J. Int., 2002, vol. 148, no. 2, pp. 214–245. https://doi.org/10.1046/j.1365-246X.2002.01588.x

    Article  Google Scholar 

  22. Kostrov, B.V. and Das, Sh., Principles of Earthquake Source Mechanics, Cambridge: Cambridge Univ. Press, 1988.

    Google Scholar 

  23. Lutikov, A.I., Dontsova, G.Yu., and Rodina, S.N., Time and energetic parameters of the aftershock process for the earthquakes in the Caucasus and adjacent areas, Geofiz. Issled., 2017, vol. 18, no. 1, pp. 20–36.  https://doi.org/10.21455/gr2017.1-2

    Article  Google Scholar 

  24. Lykov, V.I., Scheme of tectonic development of Earth’s crust, Otchet Razrabotka Fizicheskoi modeli protsessov v zone ochagov Ashkhabadskikh zemletryasenii (Report on Development of Physical Model of Process in the Hypocenter Zone of Ashgabat Earthquakes), Ashgabat: Inst. Seismologii i Fiziki Atmosfery, 1980, pp. 2–43.

    Google Scholar 

  25. Molchan, G.M. and Dmitrieva, O.E., Identification of aftershocks: Review and new approaches, Vychislit. Seismol., 1991, vol. 24, pp. 19–50.

    Google Scholar 

  26. Molchan, G.M. and Dmitrieva, O.E., Aftershock identification: methods and new approaches, Geophys. J. Int., 1992, vol. 109, no. 3, pp. 501–516.  https://doi.org/10.1111/j.1365-246X.1992.tb00113.x

    Article  Google Scholar 

  27. Mostryukov, A.O. and Petrov, V.A., Catalogue of mechanisms of earthquake hypocenters, 1964–1990, Materialy mirovogo tsentra dannykh (Materials of the World Data Center), Moscow, 1994.

  28. Novyi katalog sil’nykh zemletryasenii na territorii SSSR s drevneishikh vremen do 1975 g (New Catalog of Strong Earthquakes on the Soviet Territory from Ancient Times until 1975), Kondorskaya, N.V. and Shebalin, N.V., Eds., Moscow: Nauka, 1977.

    Google Scholar 

  29. Omori, F., On aftershocks, Rep. Imp. Earthquake Invest. Comm., 1894, no. 2, pp. 103–139.

  30. Petrova, N.V., Abaseev, S.C., and Saryeva, G.Ch., Methods of estimating Kmin at registering earthquakes by digital and analog stations of Turkmenistan, Zemletryaseniya Severnoi Evrazii, 2007 g (Earthquakes of Northern Eurasia), Obninsk: Geofiz. Sluzhba, Ross. Akad. Nauk, 2013, pp. 458–467.

    Google Scholar 

  31. Petrova, N.V., Dyagilev, R.A., and Gabsatarova, I.P., Features of seismic impact attenuation of the Russian Platform and Ural earthquakes, Seism. Instrum., 2021, vol. 57, no. 2, pp. 132–149.  https://doi.org/10.3103/S0747923921020304

    Article  Google Scholar 

  32. Prozorov, A.G., Dynamic algorithm for extracting the aftershocks for the world catalogue of earthquakes: Mathematical methods in seismology and geodynamics, Vychislit. Seismol., 1986, vol. 19, pp. 48–62.

    Google Scholar 

  33. Radziminovich, N.A. and Ochkovskaya, M.G., Extraction of aftershock and swarm sequences of earthquakes of Baikal Rift Zone, Geodyn. Tektonofiz., 2013, vol. 4, no. 2, pp. 169–186. https://doi.org/10.5800/GT-2013-4-2-0096

    Article  Google Scholar 

  34. Rastsvetaev, L.M., Faults in Central Kopetdag and their relation with folded structure, Geotektonika, 1966, no. 3, pp. 93–107.

  35. Rastsvetaev, L.M., On the role of horizontal stresses in the formation of the modern structure of Kopetdag, Noveishie tektonicheskie dvizheniya i struktura al’piiskogo geosinklinal’nogo poyasa Yugo-Zapada Evrazii (Modern Tectonic Motions and Structure of Alpine Geosynclinal Belt of South-Western Eurasia), Baku: Elm, 1970, pp. 138–144.

  36. Rautian, T.G., Energy of earthquakes, Metody detal’nogo izucheniya seismichnosti (Trudy IFZ AN SSSR, No. 9 (176)) (Methods of Detail Study of Seismicity), Moscow: Inst. Fiz. Zemli Akad. Nauk SSSR, 1960, pp. 75–114.

  37. Rautian, T.G., Khalturin, V.I., Fujita, K., Mackey, K.G., and Kendall, A.D., Origins and methodology of the russian energy K-class system and its relationship to magnitude scales, Seismol. Res. Lett., 2007, vol. 78, no. 6, pp. 579–590.  https://doi.org/10.1785/gssrl.78.6.579

    Article  Google Scholar 

  38. Reasenberg, P., Second order moment of central California seismicity, 1969–1982, J. Geophys. Res., 1985, vol. 90, no. B7, pp. 5479–5495.  https://doi.org/10.1029/JB090iB07p05479

    Article  Google Scholar 

  39. Riznichenko, Yu.V., Dimensions of hypocenter of crust earthquake and seismic moment, in Issledovaniya po fizike zemletryasenii (Studies on Physics of Earthquakes), Moscow: Nauka, 1976, pp. 9–27.

  40. Saryeva, G.Ch., Petrova, N.V., and Bezmenova, L.V., Kopetdag, Zemletryaseniya Severnoi Evrazii (Earthquakes of Northern Eurasia), No. 22 (2013), Obninsk: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2019, pp. 96–107. https://doi.org/10.35540/1818-6254.2019.22.08

  41. Saryeva, G.Ch., Petrova, N.V., and Bezmenova, L.V., Kopetdag, Zemletryaseniya Severnoi Evrazii (Earthquakes of Northern Eurasia), No. 23 (2014), Obninsk: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2020, pp. 84–94. https://doi.org/10.35540/1818-6254.2020.23.07

  42. Saryeva, G.Ch., Tachov, B., Khallaeva, A.T., Durasova, I.A., Esenova, A., and Petrova, N.V., Catalogue of earthquakes of Kopetdag in 2015, Zemletryaseniya Severnoi Evrazii. Vyp. 24 (2015 g) (Earthquakes of Northern Eurasia, No. 24 (2015)), 2021. http://www.ceme.gsras.ru/ zse/app-24.html.

  43. Shebalin, P.N., Narteau, C., and Baranov, S.V., Earthquake productivity law, Geophys. J. Int., 2020, vol. 222, no. 2, pp. 1264–1269. https://doi.org/10.1093/gji/ggaa252

    Article  Google Scholar 

  44. Tatevossian, R.E. and Aptekman, Zh.Ya., Aftershock sequences of the strongest earthquakes of the world: Stages of development, Izv., Phys. Solid Earth, 2008, vol. 44, no. 12, pp. 945–964.

    Article  Google Scholar 

  45. Ulomov, V.I., The GSHAP Region 7 Working Group, Seismic hazard of Northern Eurasia, Ann. Geophys., 1999, vol. 42, no. 6, pp. 1023–1038. https://doi.org/10.4401/ag-3785

    Article  Google Scholar 

  46. Ulomov, V. and Trifonov, V., Map of lineament-domain model of seismic source zones, SHA – Caucasus test area, 1997. http://static.seismo.ethz.ch/gshap/caucas/caucas. html.

  47. Utsu, T.A., A statistical study on the occurrence of aftershocks, Geophys. Mag., 1961, vol. 30, pp. 521–605.

    Google Scholar 

  48. Zavyalov, A.D. and Zotov, O.D., A new way to determine the characteristic size of the source zone, J. Volcanol. Seismol., 2021, vol. 15, no. 1, pp. 19–25.  https://doi.org/10.1134/S0742046321010139

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of IS&AF AST and its director G.Ch. Saryeva for support and source materials for the study.

Funding

The study was carried out in accordance with state task no. 075-00576-21 of the Ministry of Education and Science of Russia and topic TV 08.00.2526 “Assessment and Prediction of Seismic Hazard in the Territory of Turkmenistan” of the research plan of the Academy of Sciences of Turkmenistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Petrova.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, N.V., Abaseev, S.S. & Bezmenova, L.V. Kenekesir Earthquake of October 12, 2015 (MW = 5.2) in the Western Kopet Dag: Aftershock Series and Strong Ground Motions. Seism. Instr. 58, 63–85 (2022). https://doi.org/10.3103/S0747923922010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922010091

Keywords:

Navigation