Log in

Simple technique for biconical cavity eigenfrequency determination

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

A number of features of biconical cavities make them attractive for various applications. Expressions for the calculation of the eigenfrequencies of a biconical cavity with large cone angles can be derived using the overlap** domain decomposition method in combination with the collocation method; however, the expressions reported in the literature involve only a single pair of collocation points, thus giving no way to estimate the eigenfrequency determination accuracy. The aim of this paper is to calculate the biconical cavity eigenfrequencies for an arbitrary number of collocation point pairs. An equation in the biconical cavity eigenfrequencies for an azimuthally symmetric transverse electric field at an arbitrary number of collocation point pairs is derived. The equation reduces to two equations, whose solution requires far less computational effort in comparison with the original equation. The solution of one of the two equations are based on modes symmetric about the cavity symmetry plane, and the solutions of the other are based on antisymmetric modes. The calculated eigenfrequencies converge rapidly with increasing number of collocation point pairs, while the use of only one collocation point pair may introduce noticeable error. The proposed technique may be used in the development of components and units on the basis of biconical cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Egorov, “Resonance methods for microwave studies of dielectrics (Review),” Instrum. Exp. Tech. 50, No. 2, 143 (2007). DOI: 10.1134/S0020441207020017.

    Article  Google Scholar 

  2. M. N. Afsar, J. R. Birch, R. N. Clarke, G. W. Chantry, “The measurement of the properties of materials,” Proc. IEEE 74, No. 1, 183 (1986). DOI: 10.1109/PROC.1986.13432.

    Article  Google Scholar 

  3. H. E. Bussey, D. Morris, E. B. Zal’tsman, “International comparison of complex permittivity measurement at 9 GHz,” IEEE Trans. Instrum. Meas. 23, No. 3, 235 (1974). DOI: 10.1109/TIM.1974.4314270.

    Article  Google Scholar 

  4. E. Ni, U. Stumper, “Permittivity measurements using a frequency-tuned microwave TE01 cavity resonator,” IEE Proc. H-Microwaves, Antennas and Propagation 132, No. 1, 27 (1985). DOI: 10.1049/ip-h-2:19850005.

    Article  Google Scholar 

  5. C. K. Kling, K. W. Whites, L. J. Groven, “Accurate specimen placement for dielectric measurements in TM0n0 cylindrical cavity,” Proc. of IEEE Int. Symp. on Antennas and Propagation, APSURSI, 26 June-1 July 2016, Fajardo, Puerto Rico (IEEE, 2016), pp. 1995–1996. DOI: 10.1109/APS.2016.7696704.

    Google Scholar 

  6. V. A. Sydoruk, F. Fiorani, S. Jahnke, H.-J. Krause, “Design and characterization of microwave cavity resonators for noninvasive monitoring of plant water distribution,” IEEE Trans. Microwave Theory Tech. 64, No. 9, 2894 (2016). DOI: 10.1109/TMTT.2016.2594218.

    Article  Google Scholar 

  7. O. O. Drobakhin, P. I. Zabolotnyy, Ye. N. Privalov, “Taking into account the impact of coupling elements on the resonance phenomena in biconical resonators,” Radioelectron. Commun. Syst. 53, No. 7, 389 (2010). DOI: 10.3103/S0735272710070071.

    Article  Google Scholar 

  8. O. O. Drobakhin, Ye. N. Privalov, D. Yu. Saltykov, “Open-ended waveguide cutoff resonators for monitoring dielectrics parameters of gases,” Telecommun. Radio Eng. 72, No. 7, 627 (2013). DOI: 10.1615/TelecomRadEng.v72.i7.60.

    Article  Google Scholar 

  9. M. V. Andreev, O. O. Drobakhin, Ye. N. Privalov, D. Yu. Saltykov, “Measurement of dielectric material properties using coupled biconical resonators,” Telecommun. Radio Eng. 73, No. 11, 1017 (2014). DOI: 10.1615/TelecomRadEng.v73.i11.70.

    Article  Google Scholar 

  10. A. A. Alimov, A. A. Radionov, “The open limit biconical resonator calculation,” Antennas, No. 4, 40 (2015). URI: https://elibrary.ru/item.asp?id=23366163.

    Google Scholar 

  11. J. P. Van’t Hof, D. D. Stancil, “Eigenfrequencies of a truncated conical resonator via the classical and Wentzel–Kramers–Brillouin methods,” IEEE Trans. Microwave Theory Tech. 56, No. 8, 1909 (2008). DOI: 10.1109/TMTT.2008.927408.

    Article  Google Scholar 

  12. D. B. Kuryliak, Z. T. Nazarchuk, O. B. Trishchuk, “Axially-symmetric TM-waves diffraction by sphere-conical cavity,” PIER B 73, 1 (2017). DOI: 10.2528/PIERB16120904.

    Article  Google Scholar 

  13. R. H. W. Hoppe, Yu. A. Kuznetsov, “Overlap** domain decomposition methods with distributed Lagrange multipliers,” J. Numerical Math. 9, No. 1, 285 (2001).

    MathSciNet  MATH  Google Scholar 

  14. O. O. Drobakhin, P. I. Zabolotnyy, Ye. N. Privalov, “Approximate calculation of eigenfrequencies of biconical microwave cavities,” Radioelectron. Commun. Syst. 56, No. 3, 127 (2013). DOI: 10.3103/S0735272713030035.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Andreev, O. O. Drobakhin or D. Yu. Saltykov.

Additional information

Original Russian Text © M.V. Andreev, O.O. Drobakhin, D.Yu. Saltykov, N.B. Gorev, I.F. Kodzhespirova, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2017, Vol. 60, No. 12, pp. 717–725.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, M.V., Drobakhin, O.O., Saltykov, D.Y. et al. Simple technique for biconical cavity eigenfrequency determination. Radioelectron.Commun.Syst. 60, 555–561 (2017). https://doi.org/10.3103/S0735272717120056

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272717120056

Navigation