Log in

Influence of the Phase Composition of the Fe/Biochar Catalysts on the Composition of Fischer–Tropsch Synthesis Products: The Lapidus Theory of Bifunctional Catalytic Centers

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

Supported iron catalysts based on a carbon-containing material, biochar obtained by the hydrothermal carbonization of biopolymers (cellulose and lignin), were studied. The catalytic systems showed high activity in the Fischer–Tropsch synthesis. A composition of C5+ liquid products, uncharacteristic for iron-containing catalysts, characterized by high isoalkane content (up to 55%) was recorded. This fact was discussed in the context of the theory of bifunctional centers proposed by A.L. Lapidus with coworkers. It was suggested that the active centers of the test catalysts can be considered bifunctional (a carbide phase and an oxide phase). A correlation between the Fischer–Tropsch synthesis data on the test catalysts and the data obtained by Lapidus and coworkers on cobalt-containing catalysts was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Luque, R., de la Osa, A.R., Campelo, J.M., Romero, A.A., Valverde, J.L., and Sanchez, P., Energy Environ. Sci., 2012, vol. 5, no. 1, p. 5186.

    Article  CAS  Google Scholar 

  2. Roddy, D.J., Interface Focus, 2013, vol. 3, no. 1, p. 20120038.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aasberg-Petersen, K., Christensen, T.S., Dybkjaer, I., Sehested, J., Østberg, M., Coertzen, R.M., Keyser, M.J., and Steynberg, A.P., Stud. Surf. Sci. Catal., 2004, vol. 152, p. 258.

    Article  CAS  Google Scholar 

  4. Lavoie, J.J., Revue des Sciences Religieuses, 2014, vol. 88, no. 1, p. 1.

    Article  Google Scholar 

  5. Najera, M., Solunke, R., Gardner, T., and Veser, G., Chem. Eng. Res. Des., 2011, vol. 89, no. 9, p. 1533.

    Article  CAS  Google Scholar 

  6. Sumrunronnasak, S., Tantayanon, S., Kiatgamolchai, S., and Sukonket, T., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, p. 2621.

    Article  CAS  Google Scholar 

  7. Buelens, L.C., Galvita, V.V., Poelman, H., Detavernier, C., and Marin, G.B., Science, 2016, vol. 354, no. 6311, p. 449.

    Article  CAS  PubMed  Google Scholar 

  8. Park, J.Y., Lee, Y.J., Khanna, P.K., Jun, K.W., Bae, J.W., and Kim, Y.H., J. Mol. Catal. A: Chem., 2010, vol. 323, nos. 1–2, p. 84.

    Article  CAS  Google Scholar 

  9. Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., and Gu, S., Catal.: Sci. Technol., 2014, vol. 4, no. 8, p. 2210.

    CAS  Google Scholar 

  10. Van Der Laan, G.P. and Beenackers, A.A.C.M., Catal. Rev., 1999, vol. 41, nos. 3–4, p. 255.

    Article  CAS  Google Scholar 

  11. James, O.O., Chowdhury, B., Mesubi, M.A., and Maity, S., RSC Adv., 2012, vol. 2, no. 19, p. 7347.

    Article  CAS  Google Scholar 

  12. Gholami, Z., Gholami, F., Tišler, Z., Hubáček, J., Tomas, M., Bačiak, M., and Vakili, M., Catalysts, 2022, vol. 12, no. 2, p. 174.

    Article  CAS  Google Scholar 

  13. Lapidus, A.L. and Krylova, A.Yu., Ross. Khim. Zh., 2000, vol. 44, no. 1, p. 43.

    CAS  Google Scholar 

  14. Krylova, A.Yu., Iem Chong Khoang, and Lapidus, A.L., Neftekhimiya, 1983, vol. 23, no. 6, p. 779.

    Google Scholar 

  15. Iem Chong Khoang, Lapidus, A.L., Krylova, A.Yu., Kondrat’ev, L.T., and Minachev, Kh.M., Khim. Tverd. Topl. (Moscow, Russ. Fed.), 1983, no. 6, p. 7.

  16. Lapidus, A.L. and Krylova, A.Yu., Usp. Khim., 1998, vol. 67, no. 11, p. 1032.

    Article  CAS  Google Scholar 

  17. Lapidus, A.L., Eliseev, O.L., Volkov, A.S., Budtsov, V.S., Gushchin, V.V., Kuli, T.E., and Davydov, P.E., Solid Fuel Chem., 2007, vol. 41, no. 3, p. 140. https://doi.org/10.3103/S0361521907030032

    Article  Google Scholar 

  18. Wang, M., Han, Y., Liu, S., Liu, Z., An, D., Zhang, Z., Cheng, K., Zhang, Q., and Wang, Y., Chin. J. Catal., 2021, vol. 42, no. 12, p. 2197.

    Article  CAS  Google Scholar 

  19. Ding, Y., Jiao, F., Pan, X., and Bao, X., J. Energy Chem., 2022, vol. 73, p. 416.

    Article  CAS  Google Scholar 

  20. Zhao, N., Chen, Y., Li, X., Zhang, J., Dai, L., Jiang, X., Liu, C., and Li, Z., Int. J. Hydrogen Energy, 2022, vol. 47, no. 35, p. 15706.

    Article  CAS  Google Scholar 

  21. Krylova, A.Yu., Kulikova, M.V., and Lapidus, A.L., Solid Fuel Chem., 2014, vol. 48, no. 4, p. 230. https://doi.org/10.3103/S0361521914040077

    Article  CAS  Google Scholar 

  22. Valero-Romero, M.J., Rodríguez-Cano, M.Á., Palomo, J., Rodríguez-Mirasol, J., and Cordero, T., Front. Mater., 2021, vol. 7, p. 455.

    Article  Google Scholar 

  23. Wang, A., Luo, M., Lü, B., Song, Y., Li, M., and Yang, Z., Mol. Catal., 2021, vol. 509, p. 111601.

    Article  CAS  Google Scholar 

  24. Teimouri, Z., Abatzoglou, N., and Dalai, A.K., Renewable Energy, 2023, vol. 202, p. 1096.

    Article  CAS  Google Scholar 

  25. Tang, Z.E., Lim, S., Pang, Y.L., Shuit, S.H., and Ong, H.C., Renewable Energy, 2020, vol. 158, p. 91.

    Article  CAS  Google Scholar 

  26. Kulikova, M.V., Zemtsov, L.M., Sagitov, S.A., Efimov, M.N., Krylova, A.Yu., Karpacheva, G.P., and Khadzhiev, S.N., Solid Fuel Chem., 2014, vol. 48, no. 2, p. 105. https://doi.org/10.3103/S0361521914020074

    Article  CAS  Google Scholar 

  27. Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M., and Titirici, M.M., Adv. Mater., 2010, vol. 22, no. 7, p. 813.

    Article  CAS  PubMed  Google Scholar 

  28. Ramos, R., Abdelkader-Fernández, V.K., Matos, R., Peixoto, A.F., and Fernandes, D.M., Catalysts, 2022, vol. 12, no. 2, p. 207.

    Article  CAS  Google Scholar 

  29. Ivantsov, M.I., Krysanova, K.O., Grabchak, A.A., and Kulikova, M.V., Eurasian Chem. J., 2022, vol. 24, no. 4, p. 303.

    CAS  Google Scholar 

  30. Bennett, J.A., Parlett, C.M.A., Isaacs, M.A., Durndell, L.J., Olivi, L., Lee, A.F., and Wilson, K., ChemCatChem, 2017, vol. 9, no. 9, p. 1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-23-00900). The studies were carried out using the equipment of the Shared Use Center “Analytical Center for Problems of Advanced Oil Refining and Petrochemistry” at the Topchiev Institute of Petrochemical Synthesis (TIPS), Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Ivantsov, K. O. Krysanova, A. A. Grabchak or M. V. Kulikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivantsov, M.I., Krysanova, K.O., Grabchak, A.A. et al. Influence of the Phase Composition of the Fe/Biochar Catalysts on the Composition of Fischer–Tropsch Synthesis Products: The Lapidus Theory of Bifunctional Catalytic Centers. Solid Fuel Chem. 57, 367–372 (2023). https://doi.org/10.3103/S0361521923060010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521923060010

Keywords:

Navigation