Log in

A Coulomb Blockade in a Nanostructure Based on Single Intramolecular Charge Center

  • Radiophysics, Electronics, Acoustics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

A novel technique for the production of metal electrodes of a nanotransistor with a nanogap less than 4 nm between them is developed on the basis of controlling the electromigration of previously suspended nanowires of the system. A method that allows the embedding of a molecule of Rh(III) terpyridine with aurophilic ligands between electrodes is elaborated, as well. The characteristics of electron transport through a system that consists of the specified molecule with a single-atom charge center indicate the correlated (single-electron) tunneling of electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Courtland, IEEE Spectrum 54 (1), 52 (2017). doi 10.1109/MSPEC.2017.7802750

    Article  Google Scholar 

  2. M. Neisser and S. Wurm, Adv. Opt. Technol. 4, 235 (2015). doi 10.1515/aot-2015-0036

    ADS  Google Scholar 

  3. V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, Proc. IEEE 91, 1934 (2003). doi 10.1109/JPROC.2003.818324

    Article  Google Scholar 

  4. D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 62, 345 (1986). doi 10.1007/BF00683469

    Article  ADS  Google Scholar 

  5. J. M. Thijssen and H. S. J. Van der Zant, Phys. Status Solidi (b) 245, 1455 (2008). doi 10.1002/pssb.200743470

    Article  ADS  Google Scholar 

  6. J. M. Van Ruitenbeek, in Single-Molecule Electronics, Ed. by M. Kiguchi (Springer, Singapore, 2016), p. 1. doi 10.1007/978-981-10-0724-8_1

  7. L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, et al., Chem. Soc. Rev. 43, 7378 (2014). doi 10.1039/c4cs00143e

    Article  Google Scholar 

  8. H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, et al., Appl. Phys. Lett. 75, 301 (1999). doi 10.1063/1.124354

    Article  ADS  Google Scholar 

  9. D. R. Strachan, D. E. Smith, D. E. Johnston, et al., Appl. Phys. Lett. 86, 043109 (2005). doi 10.1063/1.1857095

    Article  ADS  Google Scholar 

  10. A. K. Mahapatro, J. Ying, T. Ren, and D. B. Janes, Nano Lett. 8, 2131 (2008). doi 10.1021/nl072982c

    Article  ADS  Google Scholar 

  11. S. Ghosh, H. Halimun, A. K. Mahapatro, J. Choi, et al., Appl. Phys. Lett. 87, 233509 (2005). doi 10.1063/1.2140470

    Article  ADS  Google Scholar 

  12. M. F. Lambert, M. F. Goffman, J. P. Bourgoin, and P. Hesto, Nanotechnology 14, 772 (2003).

    Article  ADS  Google Scholar 

  13. K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph, Nano Lett. 6, 123 (2006).

    Article  ADS  Google Scholar 

  14. H. Ceric and S. Selberherr, Mater. Sci. Eng., R 71 (5–6), 53 (2011). doi 10.1016/j.mser.2010.09.001

    Article  Google Scholar 

  15. S. A. Dagesyan, E. S. Soldatov, and A. S. Stepanov, Bull. Russ. Acad. Sci.: Phys. 78, 139 (2014). doi 10.3103/S1062873814020117

    Article  Google Scholar 

  16. S. A. Dagesyan, A. S. Stepanov, E. S. Soldatov, and O. V. Snigirev, J. Supercond. Novel Magn. 28, 787 (2015). doi 10.1007/s10948-014-2875-7

    Article  Google Scholar 

  17. K. R. Williams and R. S. Muller, J. Microelectromech. Syst. 5, 256 (1996). doi 10.1109/84.546406

    Article  Google Scholar 

  18. E. K. Beloglazkina, A. G. Majouga, E. A. Manzheliy, A. A. Moiseeva, et al., Polyhedron 85, 800 (2015). doi 10.1016/j.poly.2014.09.037

    Article  Google Scholar 

  19. I. V. Sapkov, E. S. Soldatov, and V. G. Elensky, Proc. SPIE 7025, 70250P (2008).

    Article  ADS  Google Scholar 

  20. A. B. Zorin, F.-J. Ahlers, J. Niemeyer, T. Weimann, et al., Phys. Rev. B 53, 13682 (1996). doi 10.1103/Phys-RevB.53.13682

    Article  ADS  Google Scholar 

  21. W. Jeong, K. Kim, Y. Kim, W. Lee, et al., Sci. Rep. 4, 4975 (2014). doi 10.1038/srep04975

    Article  ADS  Google Scholar 

  22. B. Kießig, R. Schäfer, and H. von Löhneysen, New J. Phys. 16, 013017 (2014). doi 10.1088/1367-2630/16/1/013017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Gaydamachenko.

Additional information

Original Russian Text © V.R. Gaydamachenko, E.K. Beloglazkina, R.A. Petrov, S.A. Dagesyan, I.V. Sapkov, E.S. Soldatov, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2018, No. 2, pp. 71–77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaydamachenko, V.R., Beloglazkina, E.K., Petrov, R.A. et al. A Coulomb Blockade in a Nanostructure Based on Single Intramolecular Charge Center. Moscow Univ. Phys. 73, 193–198 (2018). https://doi.org/10.3103/S0027134918020066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134918020066

Keywords

Navigation