Log in

Fast Responding Genes to HIF Prolyl Hydroxylase Inhibitors

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

The attempts to elucidate the mechanism of the hypoxic activation of erythropoietin synthesis lead to the discovery of the hypoxia inducible factor (HIF) and its stability regulation via HIF prolyl hydroxylase, iron, and α-ketoglutarate dependent dioxygenase. Enzyme inhibitors mimic the action of hypoxia; however, they are far more specific. Comparative transcriptomic microanalysis of various types of the enzyme inhibitors versus hypoxia at short incubation times demonstrates the potency of inhibitors and points to the primary targets of HIF transcription factor. The power of inhibitors evaluated in the transcriptomic analysis matches the ranking of enzyme inhibitors based on the values of their half-activation constants in the HIF1 ODD-luc reporter assay. Neuradapt is 15–20 times more potent than roxadustat, and in addition, it is much more specific for the target enzyme than roxadustat and dimethyl oxalylglycine, which probably act also on other enzymes of the same family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Wang, G.L. and Semenza, G.L., Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, no. 9, p. 4304. https://doi.org/10.1073/pnas.90.9.4304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jaakkola, P., Mole, D.R., Tian, Y.-M., Wilson, M.I., Gielbert, J., Gaskell, S.J., and Kriegsheim, A.V., Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J., Science, 2001, vol. 292, no. 5516, p. 468. https://doi.org/10.1126/science.1059796

    Article  CAS  Google Scholar 

  3. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, J., Science, 2001, vol. 292, no. 5516, p. 464. https://doi.org/10.1126/science.1059817

    Article  CAS  PubMed  Google Scholar 

  4. Noguchi, C.T., Asavaritikrai, P., Teng, R., and Jia, Y., Crit. Rev. Oncol. Hematol., 2007, vol. 64, no. 2, p. 159. https://doi.org/10.1016/j.critrevonc.2007.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Savyuk, M., Krivonosov, M., Mishchenko, T., Gazaryan, I., Ivanchenko, M., Khristichenko, A., Poloznikov, A., Hushpulian, D., Nikulin, S., Tonevitsky, E., Abuzarova, G., Mitroshina, E., and Vedunova, M., Antioxidants, 2020, vol. 9, no. 8, 662. https://doi.org/10.3390/antiox9080662

    Article  CAS  PubMed Central  Google Scholar 

  6. Maltseva, D., Raygorodskaya, M., Knyazev, E., Zgoda, V., Tikhonova, O., Zaidi, S., Nikulin, S., Baranova, A., Turchinovich, A., Rodin, S., and Tone-vitsky, A., Biochimie, 2020, vol. 174, p. 107. https://doi.org/10.1016/j.biochi.2020.04.016

    Article  CAS  PubMed  Google Scholar 

  7. Kudriaeva, A., Galatenko, V., Maltseva, D., Khaustova, N., Kuzina, E., Tonevitsky, A., Gabibov, A., and Belogurov, A., Molecules, 2017, vol. 22, no. 5, p. 808. https://doi.org/10.3390/molecules22050808

    Article  CAS  PubMed Central  Google Scholar 

  8. Chan, M.C., Ilott, N.E., Schodel, J., Sims, D., Tumber, A., Lippl, K., Mole, D.R., Pugh, C.W., Ratcliffe, P.J., Ponting, C.P., and Schofield, C.J., J. Biol. Chem., 2016, vol. 291, no. 39, p. 20661. https://doi.org/10.1074/jbc.M116.749291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hwang, S., Nguyen, A.D., Jo, Y., Engelking, L.J., Brugarolas, J., and DeBose-Boyd, R.A., J. Biol. Chem., 2017, vol. 292, no. 22, p. 9382. https://doi.org/10.1074/jbc.M117.788562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, H., Kim, D., Choi, S.A., Kim, C.R., Oh, S.K., Pyo, K.E., Kim, J., Lee, S.H., Yoon, J.B., Zhang, Y., and Baek, S.H., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 46, p. 11766. https://doi.org/10.1073/pnas.1805662115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mellén, M., Ayata, P., and Heintz, N., Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 37, E7812. https://doi.org/10.1073/pnas.1708044114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, J., Chen, L., Luo, N., Yang, W., Qu, X., and Cheng, Z., Oncol. Rep., 2015, vol. 33, no. 6, p. 3124. https://doi.org/10.3892/or.2015.3902

    Article  CAS  PubMed  Google Scholar 

  13. Nandadasa, S., Kraft, C.M., Wang, L.W., O’Donnell, A., Patel, R., Gee, H.Y., Grobe, K., Cox, T.C., Hildebrandt, F., and Apte, S.S., Nat. Commun., 2019, vol. 10, p. 953. https://doi.org/10.1038/s41467-019-08520-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jan, Y.H., Lai, T.C., Yang, C.J., Huang, M.S., and Hsiao, M., Sci. Rep., 2019, vol. 9, p. 12329. https://doi.org/10.1038/s41598-019-48243-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bjorn-Yoshimoto, W.E. and Underhill, S.M., Neurochem. Int., 2016, vol. 98, p. 4. https://doi.org/10.1016/j.neuint.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qu, Y., Mao, M., Zhao, F., Zhang, L., and Mu, D., Stroke, 2009, vol. 40, no. 8, p. 2843. https://doi.org/10.1161/STROKEAHA.109.553644

    Article  CAS  PubMed  Google Scholar 

  17. Manella, G., Aviram, R., Bolshette, N., Muvkadi, S., Golik, M., Smith, D.F., and Asher, G., Proc. Natl. Acad. Sci. U. S. A., 2020, vol. 117, p. 779. https://doi.org/10.1073/pnas.1914112117

    Article  CAS  PubMed  Google Scholar 

  18. Joshi, A.D., Front. Endocrinol., 2020, vol. 11, p. 172. https://doi.org/10.3389/fendo.2020.00172

    Article  Google Scholar 

  19. Zhang, Y., Shan, P., Srivastava, A., Li, Z., and Lee, P.J., Antioxid. Redox Signaling, 2019, vol. 30, no. 15, p. 1775. https://doi.org/10.1089/ars.2018.7514

    Article  CAS  Google Scholar 

  20. Sarapio, E., De Souza, S.K., Model, J.F.A., Trapp, M., and Da, SilvaR.S.M., Can. J. Physiol. Pharmacol., 2019, vol. 97, no. 10, p. 916. https://doi.org/10.1139/cjpp-2019-0023

    Article  CAS  PubMed  Google Scholar 

  21. Benita, Y., Kikuchi, H., Smith, A.D., Zhang, M.Q., Chung, D.C., and Xavier, R.J., Nucleic Acid Res., 2009, vol. 37, no. 14, p. 4587. https://doi.org/10.1093/nar/gkp425

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study is supported by the Russian Scientific Foundation, grant no. 20-15-00207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Gazaryan.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

The article does not describe any research with the participation of animals or humans as subjects of research.

Supplementary Information

There is no supplementary material or additional information.

Additional information

This article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hushpulian, D.M., Nikulin, S.V., Chubar, T.A. et al. Fast Responding Genes to HIF Prolyl Hydroxylase Inhibitors. Moscow Univ. Chem. Bull. 76, 114–121 (2021). https://doi.org/10.3103/S002713142102005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713142102005X

Keywords:

Navigation