Log in

A Finite Element Formulation for Highly Deformable Elastoplastic Beams Accounting for Ductile Damage and Plane Stress State

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In this work, a finite element formulation is proposed to the analysis of flexible beams under plastic strains, ductile damage and plane-stress conditions. The novel feature of the study is the combination involving an any-order beam element transversely enriched and a Gurson’s porous plasticity theory together with nonlinear isotropic hardening, as well as void growth, nucleation and coalescence. The result is a high-order cross-sectional kinematics and a constitutive elastoplastic model with a competition between strain hardening and porosity-induced softening. The elastic prediction and plastic correction phases are employed together with the Newton-Raphson iterative scheme and the backward Euler time integration of the evolution equations.

To validate the proposed formulation, a cantilever beam and a column under buckling are numerically analyzed. The influence of the mesh refinement, the set of elastoplastic parameters and the material model on the mechanical behavior is investigated in detail. High-order elements are preferable in terms of accuracy of results, despite their high computational effort regarding processing time and memory usage. Results show that the present model can reproduce finite deformations and through-the-thickness variation of 2D strains and stresses, as well as evolution of ductile damage. The importance of accounting for all the model features is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media,” J. Eng. Mater. Technol. 99 (4), 2–15 (1977). https://doi.org/10.1115/1.3443401

    Article  Google Scholar 

  2. J. Lemaitre, “A continuous damage mechanics model for ductile fracture,” J. Eng. Mater. Technol. 107 (1), 83–89 (1985). https://doi.org/10.1115/1.3225775

    Article  Google Scholar 

  3. V. Tvergaard and A. Needleman, “Analysis of the cup-cone fracture in a round tensile bar,” Acta Metall. 32 (1), 157–169 (1984). https://doi.org/10.1016/0001-6160(84)90213-X

    Article  Google Scholar 

  4. G. Hütter, T. Linse, S. Roth, et al., “A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local Gurson-model,” Int. J. Fract. 185 (1), 129–153 (2014). https://doi.org/10.1007/s10704-013-9914-4

    Article  Google Scholar 

  5. R. D. Thomson and J. W. Hancock, “Ductile failure by void nucleation, growth and coalescence,” Int. J. Fract. 26 (2), 99–112 (1984). https://doi.org/10.1007/BF01157547

    Article  Google Scholar 

  6. X. P. Xu and A. Needleman, “Void nucleation by inclusion debonding in a crystal matrix,” Modell. Simul. Mater. Sci. Eng. 1 (2), 111 (1993). https://doi.org/10.1088/0965-0393/1/2/001

    Article  ADS  Google Scholar 

  7. W. W. Pang, P. Zhang, G. C. Zhang, et al., “Dislocation creation and void nucleation in FCC ductile metals under tensile loading,” Sci. Rep. 4 (1), 1–7 (2014). https://doi.org/10.1038/srep06981

    Article  Google Scholar 

  8. A. Needleman and V. Tvergaard, “An analysis of dynamic, ductile crack growth in a double edge cracked specimen,” Int. J. Fract. 49 (1), 41–67 (1991). https://doi.org/10.1007/BF00013502

    Article  Google Scholar 

  9. K. L. Nielsen and V. Tvergaard, “Effect of a shear modified Gurson model on damage development in a FSW tensile specimen,” Int. J. Solids Struct. 46 (3–4), 587–601 (2009). https://doi.org/10.1016/j.ijsolstr.2008.09.011

  10. J. P. Crété, P. Longère, and J. M. Cadou, “Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM,” Comput. Methods Appl. Mech. Eng. 275, 204–233 (2014). https://doi.org/10.1016/j.cma.2014.03.007

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. F. Aldakheel, P. Wriggers, and C. Miehe, “A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling,” Comput. Mech. 62 (4), 815–833 (2018). https://doi.org/10.1007/s00466-017-1530-0

    Article  MathSciNet  MATH  Google Scholar 

  12. J. P. Pascon and H. Waisman, “A thermodynamic framework to predict ductile damage in thermoviscoplastic porous metals,” Mech. Mater. 153, 103701 (2021). https://doi.org/10.1016/j.mechmat.2020.103701

  13. M. A. R. K. Levinson, “A new rectangular beam theory,” J. Sound Vibr. 74 (1), 81–87 (1981). https://doi.org/10.1016/0022-460X(81)90493-4

    Article  MATH  ADS  Google Scholar 

  14. J. N. Reddy, “A simple higher-order theory for laminated composite plates,” J. Appl. Mech. 51 (4), 745–752 (1984). https://doi.org/10.1115/1.3167719

    Article  MATH  ADS  Google Scholar 

  15. S. A. Emam, “Analysis of shear-deformable composite beams in postbuckling,” Compos. Struct. 94 (1), 24–30 (2011). https://doi.org/10.1016/j.compstruct.2011.07.024

    Article  Google Scholar 

  16. J. P. Pascon, “Finite element analysis of flexible functionally graded beams with variable Poisson’s ratio,” Eng. Comput. 33 (8), 2421–2447 (2016). https://doi.org/10.1108/EC-08-2015-0225

    Article  Google Scholar 

  17. J. P. Pascon, “A new 2D beam finite element for nonlinear elastic analysis including war** and shear effects,” J. Brazil. Soc. Mech. Sci. Eng. 41 (6), 1–20 (2019). https://doi.org/10.1007/s40430-019-1760-5

    Article  Google Scholar 

  18. S. Chandrakanth and P. C. Pandey, “Damage coupled elasto-plastic finite element analysis of a Timoshenko layered beam,” Comput. Struct. 69 (3), 411–420 (1998). https://doi.org/10.1016/S0045-7949(98)00116-3

    Article  MATH  Google Scholar 

  19. A. Saritas, and F. C. Filippou, “Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress–strain relations for use in beam finite elements,” Eng. Struct. 31 (10), 2327–2336 (2009). https://doi.org/10.1016/j.engstruct.2009.05.005

    Article  Google Scholar 

  20. M. Jukić, B. Brank, and A. Ibrahimbegovic, “Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity,” Eng. Struct. 75, 507–527 (2014). https://doi.org/10.1016/j.engstruct.2014.06.017

    Article  Google Scholar 

  21. D. C. Feng, G. Wu, Z. Y. Sun, and J. G. Xu, “A flexure-shear Timoshenko fiber beam element based on softened damage-plasticity model,” Eng. Struct. 140, 483–497 (2017). https://doi.org/10.1016/j.engstruct.2017.02.066

    Article  Google Scholar 

  22. P. K. Masjedi, A. Maheri, and P. M. Weaver, “Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation,” Appl. Math. Modell. 76, 938–957 (2019). https://doi.org/10.1016/j.apm.2019.07.018

    Article  MathSciNet  MATH  Google Scholar 

  23. C. C. Chu and A. Needleman, “Void nucleation effects in biaxially stretched sheets,” J. Eng. Mater. Technol. 102 (3), 249–256 (1980). https://doi.org/10.1115/1.3224807

    Article  Google Scholar 

  24. H. B. Coda and R. R. Paccola, “An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements,” Comput. Mech. 40 (1), 185–200 (2007). https://doi.org/10.1007/s00466-006-0094-1

    Article  MATH  Google Scholar 

  25. M. C. Oliveira, J. L. Alves, B. M. Chaparro, and L. F. Menezes, “Study on the influence of work-hardening modeling in springback prediction,” Int. J. Plasticity 23 (3), 516–543 (2007). https://doi.org/10.1016/j.ijplas.2006.07.003

    Article  MATH  Google Scholar 

  26. Y. Li, J. He, B. Gu, and S. Li, “Identification of advanced constitutive model parameters through global optimization approach for DP780 steel sheet,” Proc. Eng. 207, 125–130 (2017). https://doi.org/10.1016/j.proeng.2017.10.749

    Article  Google Scholar 

  27. I. A. R. Lopes, Master’s Dissertation (Faculdade de Engenharia da Universidade do Porto, Porto, 2013).

  28. R. R. Paccola and H. B. Coda, AcadView 1.0 (Univ. of São Paulo, São Paulo, 2005).

    Google Scholar 

Download references

Funding

The authors are thankful for all the support provided by the Lorena School of Engineering, of the University of São Paulo, including both Materials Engineering Department and Chemical Engineering Department.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. P. Pascon or V. M. Daniel.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascon, J., Daniel, V. A Finite Element Formulation for Highly Deformable Elastoplastic Beams Accounting for Ductile Damage and Plane Stress State. Mech. Solids 57, 1194–1213 (2022). https://doi.org/10.3103/S0025654422050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422050119

Keywords:

Navigation