Log in

Statistical theory of multiple exciton generation in quantum dot solar cells

  • Direct Conversion of Solar Energy to Electric Energy
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The high efficiency of quantum dot solar cells is determined by the so-called multiple exciton generation (MEG) effect in quantum dots when a single photon is absorbed. The present work proposes a statistical approach to the process of simultaneous generation of many excitons in quantum dots when a high-energy photon is absorbed. This approach is based on the statistical Fermi approach to simultaneous generation of elementary particles (nucleons and π-mesons) in the nucleon-nucleon collision. Analysis of the results shows that the exciton quantum yields calculated using the statistical approach agree rather well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basic Research Needs for Solar Energy Utilization, Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, (U.S. Dep. of Energy (DOE)), 2005.

  2. Green, M.A., et al., Solar Cell Efficiency Tables (Version 23), Progress in Photovoltaics, 2003, vol. 13, p. 55.

    Google Scholar 

  3. Green, M., Third Generation Photovoltaics: Advanced Solar Energy Inversion, Berlin: Springer, 2004.

    Google Scholar 

  4. Nozik, A., J. Physica E, 2002, vol. 14, p. 115.

    Article  Google Scholar 

  5. Ross, R.T. and Nozik, A.J., J. Appl. Phys., 1982, vol. 53, p. 3813.

    Article  Google Scholar 

  6. Saidov, M.S., Geliotekhnika, 2008, no. 2, pp. 3–10 [Appl. Sol. En. (Engl. Transl.), 2008, no.2, p. 190].

  7. Schaller, R. and Klimov, V.I., Phys. Rev. Lett., 2004, vol. 92, p. 186601.

    Article  Google Scholar 

  8. Elingson, et al., Nano Lett., 2005, vol. 5, p. 865.

    Article  Google Scholar 

  9. Schaller, R., Sykora, M., Pietryga, J.M., and Klimov, V.I., Nano Lett., 2006, vol. 6, p. 424.

    Article  Google Scholar 

  10. Schaller, R.D. and Klimov, V.I., Phys. Rev. Lett., 2006, vol. 96, p. 097402-1–097402-4.

    Article  Google Scholar 

  11. Schaller, R.D., Pietryga, J.M., and Klimov, V.I., Nano Lett., 2007, vol. 7, pp. 3469–3476.

    Article  Google Scholar 

  12. Guy, A., Influence of the Electronic Structure and the Multi-Exciton Spectral Density on the Multiple Exciton Generation in Semiconductor Nanocrystals, Proc. of the CECAM Workshop on “Materials Issues in Photovoltaics”, Lausanne, 2007.

  13. Jiang, X., Schaller, R.D., Lee, S.B., et al., Journal of Material Research, 2007, vol. 22, no. 8, pp. 2204–2210.

    Article  Google Scholar 

  14. Schaller, R., Petruska, M.A., and Klimov, V.I., Appl. Phys. Lett., 2005, vol. 87, p. 253102.

    Article  Google Scholar 

  15. Nair, G. and Bawendi, M.G., Phys. Rev., 2007, vol. 76, p. 081304.

    Article  Google Scholar 

  16. Ji, M., Park, S., Connor, S.T., et al., Nano Lett., 2009, vol. 9, no. 3, pp. 1217–1222.

    Article  Google Scholar 

  17. Schaller, R.D., Agranovich, and V.M., Klimov, V.I., Nature Physics, 2005, vol. 1, p. 189.

    Article  Google Scholar 

  18. Lewis, H.W., Oppenheimer, J.R., and Wouthuysen, S.A., Phys. Rev., 1948, vol. 73, p. 127.

    Article  MATH  Google Scholar 

  19. Fermi, E., Progress of the Theoretical Physics, 1950, vol. 5, no. 4, p. 570.

    Article  MathSciNet  Google Scholar 

  20. Suzdalev, I.P., Nanothekhnologiya: fiziko-khimiya nanoklasterov, nanostructure i nanomaterialov (Nanotechnologies: Physico-Chemistry of Nanoclusters, Nanostructures and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  21. Oksengendler, B.L., Turaeva, N.N., Zakhidov, A., and Rashidova, S.Sh., Doklady AN RUz, 2008, no. 5, pp. 21–22.

  22. Beard, M., et al., Nano Lett., 2007, vol. 7, no. 8, pp. 2506–2612.

    Article  Google Scholar 

  23. Landau, L.D. and Lifshits, E.M., Kvantovaya mekhanika. Teoreticheskaya fizika (Quantum Mechanics. Theoretical Physics), Moscow: Nauka, 1974, vol. 3.

    Google Scholar 

  24. Matveev, V.N. and Parilis, E.S., Shaking under Electronic Transitions in Atoms, UFN, 1982, vol. 138, no. 4, pp. 573–602.

    Google Scholar 

  25. Krause, M.O., Carlson, T.A., and Dismukes, R.D., Phys. Rev., 1968, vol. 170, no. 1, pp. 37–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.L. Oksengendler, N.N. Turaeva, S.Sh. Rashidova, 2009, published in Geliotekhnika, 2009, No. 3, pp. 36–42.

About this article

Cite this article

Oksengendler, B.L., Turaeva, N.N. & Rashidova, S.S. Statistical theory of multiple exciton generation in quantum dot solar cells. Appl. Sol. Energy 45, 162–165 (2009). https://doi.org/10.3103/S0003701X09030074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X09030074

Keywords

Navigation