Log in

Microwave dielectric properties of BiFeO3 multiferoic films deposited on conductive layers

  • Published:
Materials Science-Poland

Abstract

Nondoped BiFeO3 (BFO) and doped Bi0.9La0.1Fe0.9Mn0.1O3 (BLFMO) thin films (d = 200–350 nm) were grown at 650–750 °C by RF sputtering on Si and SrTiO3(100), coated by conductive LaNiO3 films and La2/3Ca1/3MnO3/SrRuO3 bilayers. The complex dielectric permittivity of the films was measured at room temperature in the frequency range from 10 MHz to 10 GHz using parallel plate capacitor structures. Dielectric properties of the polycrystalline BFO films were compared with those of the epitaxial quality BLFMO films, and it was seen that the latter has better microwave performance than the former. The dielectric losses were below 0.05 at 1 GHz frequency, which may be acceptable for microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiebig M., J. Phys. D, 38 (2005). R123.

    Article  CAS  Google Scholar 

  2. Smolenskii G.A., Chupis I.E., Sov. Phys. Usp., 25 (1982), 475.

    Article  Google Scholar 

  3. Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Vehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., Spaldin N.A., Rabe K.M., Wuttig M., Ramesh R., Science, 299 (2003), 1719.

    Article  CAS  Google Scholar 

  4. Yuan G. L., Ora S. W., Liu J. M., Liu Z.G., Appl. Phys. Lett., 89 (2006), 052905.

    Article  Google Scholar 

  5. Yu B., Li M., Liu J., Guo D., Pei L., Zhao X., J. Appl. Phys., 41 (2008), 06503.

    Google Scholar 

  6. Takahashi K., Kida N., Tonouchi M., Phys. Rev. Lett., 96 (2006), 117402.

    Article  Google Scholar 

  7. Chen J.-C., Wu J.-M., Appl. Phys. Lett., 91 (2007), 182903.

    Article  Google Scholar 

  8. Zhang X-Y., Song Q., Xu F., Ong C.K., Appl. Phys. Lett., 94 (2009), 022907.

    Article  Google Scholar 

  9. Kamba S., Nuzhnyy D., Savinov M., Šebek J., Petzelt J., Prokleška J., Haumont R., Phys. Rev. B., 75 (2007), 024403.

    Article  Google Scholar 

  10. Qi X., Dho J., Tomov R., Blamire M.G., Macmanus- Driscol J.L., Appl. Phys.Lett., 86 (2005), 062903.

    Article  Google Scholar 

  11. Ma Z., Becker A.J., Polakos P., Huggins H., Pastalan J., Wu H., Watts K., Wong Y.H., Mankiewich P., IEEE Trans. Electron Devices, 45 (1998), 1811.

    Article  CAS  Google Scholar 

  12. Sobiestianskas R., Vengalis B., Banys J., Proc. IEEE 18th Intl. Symp. Applications of Ferroelectrics ISAF 2009, **an, China, 2009, p.232.

  13. Lancaster M.J., Powell J., Porch A., Supercond. Sci. Technol., 11 (1998), 1323.

    Article  CAS  Google Scholar 

  14. Krainik N.N., Khuchua N.P., Zhdanova V.V., Evseev V.A., Sov. Phys. Solid State, 8 (1966), 654.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sobiestianskas.

Additional information

The paper was presented during the 6th International Conference on Microwave Materials and their Applications MMA-2010, September 1–3, 2010, Warszawa.

About this article

Cite this article

Sobiestianskas, R., Vengalis, B., Banys, J. et al. Microwave dielectric properties of BiFeO3 multiferoic films deposited on conductive layers. Mater Sci-Pol 29, 41–46 (2011). https://doi.org/10.2478/s13536-011-0008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-011-0008-6

Keywords

Navigation