Log in

Assessment of gadolinium calcium oxoborate (GdCOB) for laser applications

  • Original Papers
  • Published:
Opto-Electronics Review

Abstract

Increasing demand for growing high quality laser crystals puts a question about their most important parameters that one should concentrate on to get a desired product which will exhibit best properties in practical use. And by no means, this is a simple question. Apart of the usual lasing properties associated with a special dopant in the host material itself, one needs to consider another two lasing phenomena, namely second (SHG) and higher harmonic generation, and self-frequency doubling (SFD). Not necessarily all of these three can meet altogether in the same host material to yield in its best appearance in every case. We have made a review of basic properties of gadolinium oxoborate GdCa4O(BO3)3 (GdCOB) crystal and came to the conclusion that, currently, as a host material this is probably the best in all of its lasing applications. Although GdCOB has low thermal conductivity, which requires a suitable cooling, on the other hand it has got small thermo-optic coefficients which govern good operation in SHG and SFD experiments.

Two inch dia. Nd-doped crystals were grown by the Czochralski technique. Since a large discrepancy in the literature exists on exact values of nonlinear coefficients, one is never sure about this whether theoretically predicted phase-matching angles (PMA) are those that are really optimal. Besides, none has yet measured the values of nonlinear coefficients as a function of do** concentration. Therefore we have not decided to cut numerous differently oriented samples for generation of different wavelengths in SHG and SFD, but rather tried to generate different wavelengths from the same samples. We have also not paid special attention to get highest possible conversion efficiencies. However, we have concentrated our attention on potential use of the core region in laser technique. Unlike in YAG crystals, when the core is by all means a parasitic structure, we discovered that the core region in GdCOB, that majority of investigators are even not aware of its presence in the crystal, can be also useful in laser technique. According to our best knowledge, a SHG of red light in this work is the second reported case in the world-wide literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Paschotta, “An open access encyclopedia for photonics and laser technology” http://www.rp-photonics.com/ency-clopedia.html.

  2. G. Aka, A. Kahn-Harari, D. Vivien, J.M. Benitez, F. Salin, and J. Goodard, “A new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB)”, Eur. J. Sol. Stat. Inor. 33, 727–736 (1996).

    Google Scholar 

  3. X. Hu, J. Wang, S. Jiang, H. Liu, M. Guo, H. Jiang, C. Zhang, Y. Tian, and W. Huang, “Image shifts resulting from the misorientation of two individuals in Ca4GdO(BO3)3 crystal”, J. Cryst. Growth 229, 252–255 (2001).

    Article  ADS  Google Scholar 

  4. G. Aka, F. Mougel, D. Pelenc, B. Ferrand, and D. Vivien, “Comparative evaluation of GdCOB and YCOB nonlinear-optical properties, in principal and out of principal plane configurations, for the 1064 nm Nd:YAG laser frequency conversion”, Proc. SPIE 3928, 108–114 (2000).

    Article  ADS  Google Scholar 

  5. S. Zhao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal”, Progr. Cryst. Growth Ch. 40, 63–73 (2000).

    Article  Google Scholar 

  6. Z. Wang, R. Song, X. Xu, X. Sun, J. Wang, J. Wei, and Z. Shao, “Absolute scale and spatial distribution of nonlinear-optical coefficients of GdCOB crystal”, Acta Opt. Sinica 21, 1022–1024 (2001).

    Google Scholar 

  7. X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals”, Opt. Commun. 196, 299–307 (2001).

    Article  ADS  Google Scholar 

  8. Zh. P. Wang, J.H. Liu, R.B. Song, H.D. Jiang, S.J. Zhang, K. Fu, Ch.Q. Wang, J.Y. Wang, Y.G. Liu, J.Q. Wei, H.Ch. Chen, and Z.Sh. Shao, “Anisotropy of nonlinear-optical property of RCOB (R = Gd, Y) crystal”, Chin. Phys. Lett. 18, 385–387 (2001).

    Article  ADS  Google Scholar 

  9. F. Mougel, G. Aka, F. Salin, D. Pelenc, B. Ferrand, A. Kahn-Harari, and D. Vivien, “Accurate second harmonic generation phase matching angles prediction and evaluation of nonlinear coefficients of Ca4YO(BO3)3 (YCOB) crystal”, Advanced Solid-State Lasers — OSA Trends in Opt. Photon. Ser. 26, 709–714 (1999).

    Google Scholar 

  10. G. Aka, F. Mougel, D. Vivien, R. Klein, G. Kugel, B. Ferrand, D. Pelenc, in C. Marshall (Ed.), OSA Proc. Series on Advanced Solid State Lasers 2001, 50, 548 (2001).

  11. D. Xue and S. Zhang, “Structural analysis of nonlinearities of Ca4ReO(BO3)3 (Re=La, Nd, Sm, Gd, Er, Y)”, Appl. Phys. A68, 57–61 (1999).

    ADS  Google Scholar 

  12. J. Lu, G. Li, J. Liu, Sh. Zhang, H. Chen, M. Jiang, and Z. Shao, “Second harmonic generation and self-frequency doubling performance in Nd:GdCa4O(BO3)3 crystal”, Opt. Commun. 168, 405–408 (1999).

    Article  ADS  Google Scholar 

  13. Zh. Wang, J. Liu, R. Song, X. Xu, X. Sun, H. Jiang, K. Fu, J. Wang, Y. Liu, J. Wei, and Z. Shao, “The second-harmonic-generation property of GdCa4O(BO3)3 crystal with various phase matching directions”, Opt. Commun. 187, 401–405 (2001).

    Article  ADS  Google Scholar 

  14. F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochralski grown GdCOB oxoborate single crystals”, J. Mater. Chem. 8, 1619–1623 (1998).

    Article  Google Scholar 

  15. Catalogue of the DeLnOptics Co. www.delnoptics.com.

  16. J.M. Kim, in New Physics (Kor.), 56, 203 (2008).

    Google Scholar 

  17. Catalogue of the Coherent Optics Co., www.coherent.com.

  18. Z.G. Hu and P. Hess, “Optical constants and thermo-optic coefficients of nanocrystalline diamond films at 30–500°C”, Appl. Phys. Lett. 89, 081906 (2006).

    Article  ADS  Google Scholar 

  19. Catalogue of the APC Co., www.americanphotonics.com

  20. A. Kłos, J.Z. Domagała, A. Bajor, and A. Pajączkowska, “Structure deformation in GdCOB single crystals grown by the Czochralski method”, Cryst. Growth Des. 8, 3253–3256 (2008).

    Article  Google Scholar 

  21. A.L. Bajor, T. Piątkowski, and M. Leśniewski, “Automated birefringence dispersion measurements”, Meas. Sci. Technol. 17, 427–435 (2006).

    Article  ADS  Google Scholar 

  22. J. Młyńczak, K. Kopczyński, J. Mierczyk, and G. Adamski, “Measurement setup for investigation of nonlinear absorption”, Proc. 4 th Conf. on Optoelectronics, Poznań, 2005. (in Polish)

  23. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J.M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB)”, Opt. Mater. 8, 161–173 (1997).

    Article  Google Scholar 

  24. A. Brenier, D. Jaque, and A. Majchrowski, “Bi-functional laser and non-linear optical crystals”, Opt. Mater. 28, 310–323 (2006).

    Article  ADS  Google Scholar 

  25. X. Hou, J. Huang, Y. Li, Y. Sun, and L. Pan, “Space phase matching and self-frequency-doubling red laser in Nd:GdCOB crystal”, Opt. Laser Technol. 35, 471–474 (2003).

    Article  ADS  Google Scholar 

  26. P.B.W. Burmester, T. Kellner, E. Heumann, G. Huber, R. Uecker, and P. Reiche, “Blue laser emission at 465 nm by type-I noncritically phase-matched second harmonic-generation in Gd1−xYxCa4O(BO3)3”, Laser Phys. 10, 441–443 (2000).

    Google Scholar 

  27. G. Aka and A. Brenier, “Self-frequency conversion in non-linear laser crystals”, Opt. Mater. 22, 89–94 (2003).

    Article  ADS  Google Scholar 

  28. J. Wang, Z. Shao, J. Wei, X. Hu, Y. Liu, B. Gong, G. Li, J. Lu, M. Guo, and M. Jiang, “Research on growth and self-frequency doubling of Nd:ReCOB (R = Y or Gd) crystals”, Prog. Cryst. Growth Ch., 17–31 (2000).

  29. X. Hou, Y. Sun, Y. Li, Sh. Xu, E. Liu, Sh. Zhang, Zh. Cheng, H. Chen and Z. Shao, “Laser characteristics of Cr:Nd: GdCOB self-frequency-doubling crystal”, Opt. Laser Technol. 32, 135–138 (2000).

    Article  ADS  Google Scholar 

  30. T. Łukasiewicz, I.V. Kityk, M. Makowska-Janusik, A. Majchrowski, Z. Gązka, H. Kaddouri, and Z. Mierczyk, “Influence of Ca4GdO(BO3)3 do** on its properties”, J. Cryst. Growth 237–239, 641–644 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Bajor.

About this article

Cite this article

Bajor, A.L., Kisielewski, J., Kłos, A. et al. Assessment of gadolinium calcium oxoborate (GdCOB) for laser applications. Opto-Electron. Rev. 19, 439–448 (2011). https://doi.org/10.2478/s11772-011-0042-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-011-0042-2

Keywords

Navigation