Log in

Mannan specific family 35 carbohydrate-binding module (CtCBM35) of Clostridium thermocellum: structure analysis and ligand binding

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The three-dimensional model of the CtCBM35 (Cthe 2811), i.e. the family 35 carbohydrate binding module (CBM) from the Clostridium thermocellum family 26 glycoside hydrolase (GH) β-mannanase, generated by Modeller9v8 displayed predominance of β-sheets arranged as β-sandwich fold. Multiple sequence alignment of CtCBM35 with other CBM35s showed a conserved signature sequence motif Trp-Gly-Tyr, which is probably a specific determinant for mannan binding. Cloned CtCBM35 from Clostridium thermocellum ATCC 27405 was a homogenous, soluble 16 kDa protein. Ligand binding analysis of CtCBM35 by affinity electrophoresis displayed higher binding affinity against konjac glucomannan (K a = 2.5 × 105 M−1) than carob galactomannan (K a = 1.4 × 105 M−1). The presence of Ca2+ ions imparted slightly higher binding affinity of CtCBM35 against carob galactomannan and konjac glucomannan than without Ca2+ ion additive. However, CtCBM35 exhibited a low ligand-binding affinity K a = 2.5 × 10−5 M−1 with insoluble ivory nut mannan. Ligand binding study by fluorescence spectroscopy showed K a against konjac glucomannan and carob galactomannan, 2.4 × 105 M−1 and 1.44 × 105 M−1, and ΔG of binding −27.0 and −25.0 kJ/mol, respectively, substantiating the findings of affinity electrophoresis. Ca2+ ions escalated the thermostability of CtCBM35 and its melting temperature was shifted to 70°C from initial 55°C. Therefore thermostable CtCBM35 targets more β-(1,4)-manno-configured ligands from plant cell wall hemicellulosic reservoir. Thus a non-catalytic CtCBM35 of multienzyme cellulosomal enzymes may gain interest in the biofuel and food industry in the form of released sugars by targeting plant cell wall polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CAZy:

Carbohydrate-Active enZyme database

CBM:

carbohydrate-binding module

CtCBM35 (i.e. Cthe_2811):

CBM35 from the Clostridium thermocellum GH26 β-mannanase

EDTA:

ethylenediaminetetraacetic acid

GH:

glycoside hydrolase

PDB:

Protein Data Bank

RMSD:

root mean square deviation

References

  • Abbott D.W. & Boraston A.B. 2012. Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol. 510: 211–231.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S., Luis A.S., Brás J.L.A., Fontes C.M.G.A. & Goyal A. 2013. Functional and structural characterization of family 6 carbohydrate binding module (CtCBM6A) of Clostridium thermocellumα-L-arabinofuranosidase. Biochemistry (Moscow) 78: 1272–1279.

    Article  CAS  Google Scholar 

  • Bolam D.N., **e H., Pell G., Hogg D., Galbraith G., Henrissat B. & Gilbert H.J. 2004. X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J. Biol. Chem. 279: 22953–22963.

    Article  CAS  PubMed  Google Scholar 

  • Bradford M.M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Belatik A., Hotchandani S., Carpentier R. & Tajmir-Riahi H.A. 2012. Locating the binding sites of Pb (ii) ion with human and bovine serum albumins. Plos One 7: e3672.

    Article  Google Scholar 

  • Boraston A.B., Bolam D.N., Gilbert, HJ. & Davies G.J. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382: 769–781.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Correia M.A., Abbott D.W., Gloster T.M., Fernandes V.O., Prates J.A., Montanier C., Dumon C., Williamson M.P., Tunnicliffe R.B., Liu Z., Flint J.E., Davies G.J., Henrissat B., Coutinho P.M., Fontes C.M.G.A. & Gilbert H.J. 2010. Signature active site architectures illuminate the molecular basis for ligand specificity in family 35 carbohydrate binding module. Biochemistry 49: 6193–6205.

    Article  CAS  PubMed  Google Scholar 

  • Couturier M., Roussel A., Rosengren A., Leone P., Stĺlbrand H. & Berrin J.G. 2013. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 β-(1,4)-mannanases from Podospora anserina reveal differences upon mannooligosaccharide catalysis. J. Biol. Chem. 288: 14624–14635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dvortsov I.A., Lunina N.A., Chekanovskaya L.A., Schwarz W.H., Zverlov V.V. & Velikodvorskaya G.A. 2009. Carbohydratebinding properties of a separately folding protein module from β-1,3-glucanase Lic16A of Clostridium thermocellum. Microbiology 155: 2442–2449.

    Article  CAS  PubMed  Google Scholar 

  • Fiser A., Do R.K. & Sali A. 2000. Modeling of loops in protein structures. Protein Sci. 9: 1753–1773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh A., Luís A.S., Brás J.L.A., Pathaw N., Chrungoo N.K., Fontes C.M.G.A. & Goyal A. 2013. Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for gluco- and galacto-substituted mannans and its calcium induced stability. Plos One 8: e80415.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilkes N.R., Eric J.S., Henrissat B., Tekant B., Miller R.C. Jr., Warren R.A. & Kilburn D.G. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J. Biol. Chem. 267: 6743–6749.

    CAS  PubMed  Google Scholar 

  • Gilbert H.J., Knox J.P & Boraston A.B. 2013. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate binding modules. Curr. Opin. Struct. Biol. 23: 669–677.

    Article  CAS  PubMed  Google Scholar 

  • Holm L. & Rosenstrom P. 2010. Dali server: conservation map** in 3D. Nucleic Acids Res. 38: 545–549.

    Article  Google Scholar 

  • Henshaw J., Horne-Bitschy A., van Bueren A.L., Bolam D.N., Czjek M., Ekborg N.A., Weiner R.M., Hutcheson S.W., Davis G.J., Boraston A.B. & Gilbert H.J. 2006. Family 6 carbohydrate binding modules in β-agarase display exquisite selectivity for the non-reducing termini of agarose chains. J. Biol. Chem. 281: 17099–17107.

    Article  CAS  PubMed  Google Scholar 

  • Krieger E., Joo K., Lee J., Raman S., Thompson J., Tyka M., Baker D. & Karplus K. 2009. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77: 114–122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lesnichaya M.V. & Aleksandrova G.P. 2013. Molecular-weight characteristics of galactomannan and carrageenan. Chem. Nat. Comp. 49: 405–410.

    Article  CAS  Google Scholar 

  • Montanier C., van Bueren A.L., Dumon C., Flint J.E., Correia M.A., Prates J.A, Firbank S.J., Lewis R.J., Grondin G.G., Ghinet M.G., Gloster T.M., Herve C., Knox J.P., Talbot B.G., Turkenburg J.P., Kerovuo J., Brzezinski R., Fontes C.M., Davies G.J., Boraston A.B. & Gilbert H.J. 2009. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc. Natl. Acad. Sci. USA 106: 3065–3070.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pace N.C., Shirley B.A. & Thomson J.A. 1989. Measuring the conformational stability of a protein pp. 311–329. In: Creighton T.E. (ed.) Protein Structure: A Practical Approach. IRL Press, Oxford.

    Google Scholar 

  • Royer C.A. 2006. Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 106: 1769–1784.

    Article  CAS  PubMed  Google Scholar 

  • Sali A., Potterton L., Feng Y., Herman V. & Martin K. 1995. Evaluation of comparative protein modeling by Modeller. Proteins 23: 318–326.

    Article  CAS  PubMed  Google Scholar 

  • Takeo K. 1984. Affinity electrophoresis: principles and applications. Electrophoresis 5: 187–195.

    Article  CAS  Google Scholar 

  • Tunnicliffe R.B., Bolam D.N., Pell G., Gilbert H.J. & Williamson M.P. 2005. Structure of a mannan-specific family 35 carbohydrate binding module: evidence for significant conformational changes upon ligand binding. J. Mol. Biol. 347: 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela S.V., Diaz P. & Pastor F.I. 2012. Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydratebinding module. Appl. Environ. Microbiol. 78: 3923–3931.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu M., Li D.S., Li B., Wang C., Zhu Y.P., Lv W.P. & **e B.J. 2013. Comparative study on molecular weight of konjac glucomannan by gel permeation chromatography-laser light scattering-refractive index and laser light-scattering methods. J. Spectroscopy Art. ID: 685698.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal.

Additional information

Based on a contribution presented at the International Conference on Advances in Biotechnology & Bioinformatics (ICABB-2013), November 25–27, 2013, Pune, Maharashtra, India. Electronic supplementary material. The online version of this article (DOI:10.2478/s11756-014-0444-y) contains supplementary material, which is available to authorized users.

Both authors have equally contributed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Verma, A.K., Luis, A.S. et al. Mannan specific family 35 carbohydrate-binding module (CtCBM35) of Clostridium thermocellum: structure analysis and ligand binding. Biologia 69, 1271–1282 (2014). https://doi.org/10.2478/s11756-014-0444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0444-y

Key words

Navigation