Log in

A stopped-flow fluorescence study of the native and modified lysozyme

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The protein folding kinetics of hen egg white lysozyme (HEWL) was studied using experimental and bioinformatics tools. The structure of the transition state in the unfolding pathway of lysozyme was determined with stopped-flow kinetics using intact HEWL and its chemically modified derivative, in which six lysine residues have been modified. The overall consistency of φ-value (φ ≈ 1) indicates that lysine side chains interactions are subject to breaking in the structure of the transition state. Following experimental evidences, multiple sequence alignment of lysozyme family in vertebrates and exact structural examination of lysozyme, showed that the α-helix in the structure of lysozyme has critical role in the unfolding kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HEWL:

hen egg white lysozyme

References

  • Altschul S.F., Gish W., Miller W., Myers E.W & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Blake C.C.F., Johnson L.N., Mair G.A., North A.C.T., Phillips D.C & Sarma V.R. 1967. Crystallographic studies of the activity of hen egg-white lysozyme. Proc. Roy. Soc. 167: 378–388.

    CAS  Google Scholar 

  • Bryngelson J.D., Onuchic J.N., Socci N.D & Wolynes P.G. 1995. Funnels, pathways and the energy landscape of protein folding: a synthesis. Proteins: Struct. Funct. Genet. 21: 167–195.

    Article  CAS  Google Scholar 

  • Caffotte A.F., Guillou Y & Goldberg M.E. 1992. Kinetic resolution of peptide bond and side-chain far UV CD during folding of HEWL. Biochemistry 31: 9694–9702.

    Article  Google Scholar 

  • Chen L., Wildegger G., Kiefhaber T.H., Hodgson K.O & Doniach S. 1998. Kinetics of lysozyme refolding: structural characterization of a non-specifically collapsed state using time-resolved X-ray scattering. J. Mol. Biol. 276: 225–237.

    Article  PubMed  CAS  Google Scholar 

  • Dalby P.A, Oliveberg M. & Fersht A.R. 1998. Folding intermediates of wild-type and mutants of barnase: use of φ-value analysis and m-values to probe the cooperative nature of the folding pre-equilibrium. J. Mol. Biol. 276: 625–646.

    Article  PubMed  CAS  Google Scholar 

  • Demirel M.C., Atilgan A.R., Jernigan R.L., Erman B & Bahar I. 1998. Identification of kinetically hot residues in proteins. Protein Sci. 7: 2522–2532.

    PubMed  CAS  Google Scholar 

  • Denton M.E., Rothwarf D.M & Scheraga H.A. 1994. Kinetics of folding of guanidinic denatured hen egg white lysozyme and carboxymethyl Cys(6).Cys(12r)-lysozyme: a stopped-flow absorbance and fluorescence study. Biochemistry 33: 11225–11236.

    Article  PubMed  CAS  Google Scholar 

  • Dixon H.B.F & Perham R.N. 1968. Reversible blocking of amino groups with citraconic anhydride. Biochem. J. 109: 312–314.

    PubMed  CAS  Google Scholar 

  • Evans M.G & Polanyi M. 1935. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31: 875–894.

    Article  CAS  Google Scholar 

  • Eyring H. 1935. The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17: 65–77.

    Article  CAS  Google Scholar 

  • Fersht A.R. 1993. Protein folding and stability: the pathway of folding of barnase. FEBS Lett. 325: 5–16.

    Article  PubMed  CAS  Google Scholar 

  • Fersht A.R. 1997. Nucleation mechanisms in protein folding. Curr. Opin. Struct. Biol. 7: 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Fersht A.R., Matouscheck A & Serrano L. 1992. The folding of an enzyme: I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224: 771–782.

    Article  PubMed  CAS  Google Scholar 

  • Ikeguchi M., Fu**o M., Kato M., Kuwajima K & Sugai S. 1998. Transition state in the folding of α-lactalbumin probed by the 6–120 disulfide bond. Protein Sci. 7: 1564–1574.

    Article  PubMed  CAS  Google Scholar 

  • Imoto T., Forster L.S., Rupley J.A & Tanak F. 1981. Fluorescence of lysozyme: emission from tryptophan residues 62 and 108 and energy migration. Proc. Natl. Acad. Sci. USA 69: 1151–1155.

    Article  Google Scholar 

  • Itzhaki L.S., Evans P.A., Dobson C.M. & Radford S.E. 1994. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probs. Biochemistry 33: 5212–5220.

    Article  PubMed  CAS  Google Scholar 

  • Jolles P & Jolles J. 1984. What’s new in lysozyme research? Mol. Cell. Biochem. 63: 165–189.

    Article  PubMed  CAS  Google Scholar 

  • Kato S., Shimoto N. & Utijma H. 1982. Identification and characterization of the direct folding process of hen egg white lysozyme. Biochemistry 21: 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Khan F., Chuang J.I., Gianni S & Fersht A.R. 2003. The kinetic pathway of folding of barnase, J. Mol. Biol. 333: 169–186.

    Article  PubMed  CAS  Google Scholar 

  • Kiefhaber T. 1995. Kinetic traps in lysozyme folding. Proc. Natl. Acad. Sci. USA 92: 9029–9033.

    Article  PubMed  CAS  Google Scholar 

  • Kiefhaber T & Wildegger G. 1997. Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate. J. Mol. Biol. 270: 294–304.

    Article  PubMed  Google Scholar 

  • Kuwajima K., Hiraoka Y., Ikeguchi M & Sugai S. 1985. Comparison of the transition state folding intermediates in lysozyme and α-lactalbumin. Biochemistry 24: 874–881

    Article  PubMed  CAS  Google Scholar 

  • Matouschek A., Kellis J., Serrano L & Fersht A.R. 1989. Map** the transition state and pathway of protein folding by protein engineering. Nature 340: 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Matouschek A., Serrano L. & Fersht A.R. 1992. The folding of an enzyme: IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure. J. Mol. Biol. 224: 819–835.

    Article  PubMed  CAS  Google Scholar 

  • Matouschek A., Serrano L., Meiering E.M., Bycroft M. & Fersht A.R. 1992. The folding of an enzyme: V. H/2H exchange-nuclear magnetic resonance studies on the folding pathway of barnase: complementarity to and agreement with protein engineering studies. J. Mol. Biol. 224: 837–845.

    Article  PubMed  CAS  Google Scholar 

  • Mirny L.A., Abkevich V.I & Shakhnovich E.I. 1998. How evolution makes proteins fold quickly. Proc. Natl. Acad. Sci. USA 95: 4976–4981.

    Article  PubMed  CAS  Google Scholar 

  • Mirny L.A & Shakhnovich E.I. 1999. Universally conserved positions in protein folds: reading evolutionary signals about stability, folding and function. J. Mol. Biol. 291: 177–196.

    Article  PubMed  CAS  Google Scholar 

  • Mirny L.A & Shakhnovich E.I. 2001a. Protein folding theory: from lattice to all-atom models. Annu. Rev. Biophys. Biomol. Struct. 30: 361–396.

    Article  PubMed  CAS  Google Scholar 

  • Mirny L.A & Shakhnovich E.I. 2001b. Evolutionary conservation of the folding nucleus. J. Mol. Biol. 308: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell P.H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007–4021.

    PubMed  CAS  Google Scholar 

  • Pane V.S., Grosberg A.Y., Tanaka T & Rokhsar D.S. 1998. Pathways for protein folding: is a new view needed? Curr. Opin. Struct. Biol. 8: 68–79.

    Article  Google Scholar 

  • Parker M.J., Spencer J & Clark A.R. 1995. An integrated kinetic analysis of intermediates and transitions states in protein folding reactions. J. Mol. Biol. 253: 771–786.

    Article  PubMed  CAS  Google Scholar 

  • Plaxco K.W., Riddle D.S., Larson S., Ruczinski I., Thayer E.C & Buchwits B. 2001. Evolutionary conservation and protein folding kinetics. J. Mol. Biol. 298: 303–312.

    Article  CAS  Google Scholar 

  • Poupon A. & Marnon J.P. 1999. Predicting the protein folding nucleus from a sequence. FEBS Lett. 452: 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Protasevich I., Ranjbar B., Lobachov V., Makarov A., Gilli R., Briand C., Lafitte D & Haiech J. 1997. Conformation and thermal denaturation of apocalmodulin: role of electrostatic mutations. Biochemistry 36: 2017–2024.

    Article  PubMed  CAS  Google Scholar 

  • Radford S.E., Dobson C.M & Evans P.A. 1992. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358: 302–307.

    Article  PubMed  CAS  Google Scholar 

  • Rypniech W.R., Holden H.M & Rayment I. 1993. Structural consequences of reductive methylation of lysine residue in hen egg white lysozyme: an X-ray analysis at 1.8–? resolution. Biochemistry 32: 9851–9858.

    Article  Google Scholar 

  • Salmine M., Caro B., Guen-Robin F.L., Blais J.C & Jaouen G. 2004. Solution-and crystal-phase covalent modification of lysozyme by a purpose-designed organoruthenium complex. A MALDI-TOF MS study of its metal binding sites. ChemBioChem 5: 99–109.

    Article  CAS  Google Scholar 

  • Sanz J.M & Fersht A.R. 1994. Measurement of barnase refolding rate constants under denaturing conditions, FEBS Lett. 344: 216–220.

    Article  PubMed  CAS  Google Scholar 

  • Schippers P.H & Deckers H.P.J.M. 1981. Direct determination of absolute circular dichroism data and calibration of commercial instrument. Anal. Chem. 53: 778–788.

    Article  CAS  Google Scholar 

  • Segel D.J., Bachmann A., Hofrichter J., Hodgson K.O & Daniach S. 1999. Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J. Mol. Biol. 288: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Serrano L., Kellis J., Cann T.P., Matouschek A & Fersht A.R. 1992. The folding of an enzyme: II. Substructure of barnase and the contribution of different interactions to protein stability. J. Mol. Biol. 224: 783–804.

    Article  PubMed  CAS  Google Scholar 

  • Serrano L., Matouschek A & Fersht A.R. 1992. The folding of an enzyme: III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J. Mol. Biol. 224: 805–818.

    Article  PubMed  CAS  Google Scholar 

  • Serrano L., Matouschek A & Fersht, A.R. 1992. The folding of an enzyme: IV. The folding pathway of barnase: comparison with theoretical models. J. Mol. Biol. 224: 847–850.

    Article  PubMed  CAS  Google Scholar 

  • Shakhnovich E.I., Abkevich V.I & Ptitsyn O. 1996. Conserved residues and the mechanism of protein folding. Nature 379: 96–98.

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava I., Vishveshwara S., Clieplak M., Maritan A & Banavar J.R. 1995. Lattice model for rapidly folding protein-like heteropolymers. Proc. Natl. Acad. Sci. USA 92: 9206–9209.

    Article  PubMed  CAS  Google Scholar 

  • Suckau D., Mak M & Przybylski M. 1992. Protein surface topology-probing by selective chemical modification and mass spectrometric peptide map**. Proc. Natl. Acad. Sci. USA 89: 5630–5634.

    Article  PubMed  CAS  Google Scholar 

  • Takakuwa T., Konno T & Meguro H.A. 1985. New standard substance for calibration of circular dichroism: ammoniumd-10-camphorsulfonate. Anal. Sci. 1: 215–225.

    CAS  Google Scholar 

  • Tanford C. 1968. Protein denaturation. Adv. Protein Chem. 23: 121–282.

    PubMed  CAS  Google Scholar 

  • Tanford C. 1970. Protein denaturation. Adv. Protein Chem. 24: 1–95.

    Article  PubMed  CAS  Google Scholar 

  • Tanford C., Aune K.C & Ikai A.A. 1973. Kinetics of unfolding and refolding of proteins. III: Results for lysozyme. J. Mol. Biol. 73: 185–197.

    Article  PubMed  CAS  Google Scholar 

  • Tang K.S., Guaralnick B.J., Wang W.K., Fersht A.R & Itzhaki L.S. 1999. Stability and folding of the tumor suppressor protein P16. J. Mol. Biol. 285: 1869–1886.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J.D., Higgins D.G & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalifeh, K., Ranjbar, B., Khajeh, K. et al. A stopped-flow fluorescence study of the native and modified lysozyme. Biologia 62, 258–264 (2007). https://doi.org/10.2478/s11756-007-0045-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-007-0045-0

Key words

Navigation