Log in

Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The Diels-Alder reaction was used to fabricate hydroxypropyl methylcellulose-based hydrogels. First, hydroxypropylmethylcellulose (HPMC) was modified by a carboxyl-containing diene molecule (SFA) which was synthesised from furfurylamine and succinic anhydride. Second, dienophile groups were introduced into HPMC by the coupling reaction with N-maleoyl alanine (AMI) using N,N′-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). Subsequently, the asprepared furan- and maleimide-modified HPMC were dissolved in water and gelation was observed at a pre-determined temperature after a period of time. The samples thus obtained were characterised by FTIR, NMR, SEM, etc. The gelation time changing with temperature, concentration of the solution, and solvent was measured. It was found that gelation time decreased with increasing temperature and concentration of the solution, and that water had a rate-accelerating effect on Diels-Alder reaction. The swelling behaviour indicates that the hydrogels have a high swelling ratio in water and the swelling ratio increases with the increasing temperature. Taking into consideration that the HPMC-based hydrogels are prepared under mild reaction conditions with an adjustable gelation time and thermal stability, the method described here has a potential application in biomaterials, especially in the areas of tissue-engineering and drug-controlled release carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, K., & Yano, H. (2012). Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose, 19, 1907–1912. DOI: 10.1007/s10570-012-9784-3.

    Article  CAS  Google Scholar 

  • Bajpai, A. K., & Giri, A. (2002). Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. Reactive & Functional Polymers, 53, 125–141. DOI: 10.1016/s1381-5148(02)00168-2.

    Article  CAS  Google Scholar 

  • Bao, Y., Ma, J., & Sun, Y. (2012). Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydrate Polymers, 88, 589–595. DOI: 10.1016/j.carbpol.2012.01.003.

    Article  CAS  Google Scholar 

  • Burdock, G. A. (2007). Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food and Chemical Toxicology, 45, 2341–2351. DOI: 10.1016/j.fct.2007.07.011.

    Article  CAS  Google Scholar 

  • Chang, C., & Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84, 40–53. DOI: 10.1016/j.carbpol.2010.12.023.

    Article  CAS  Google Scholar 

  • Choi, S. W., Moon, S. K., Chu, J. Y., Lee, H. W., Park, T. J., & Kim, J. H. (2012). Alginate hydrogel embedding poly(d,l-lactide-co-glycolide) porous scaffold disks for cartilage tissue engineering. Macromolecular Research, 20, 447–452. DOI: 10.1007/s13233-012-0130-2.

    Article  CAS  Google Scholar 

  • Dalvi, S. V., & Dave, R. N. (2010). Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation. International Journal of Pharmaceutics, 387, 172–179. DOI: 10.1016/j.ijpharm.2009.12.026.

    Article  CAS  Google Scholar 

  • Das, R., Panda, A. B., & Pal, S. (2012). Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose, 19, 933–945. DOI: 10.1007/s10570-012-9692-6.

    Article  CAS  Google Scholar 

  • Diaf, K., El Bahri, Z., Chafi, N., Belarbi, L., & Mesli, A. (2012). Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres. Chemical Papers, 66, 779–786. DOI: 10.2478/s11696-012-0191-x.

    Article  CAS  Google Scholar 

  • Ding, C., Zhang, M., Tian, H., & Li, G. (2013). Effect of hydroxypropyl methylcellulose on collagen fibril formation in vitro. International Journal of Biological Macromolecules, 52, 319–326. DOI: 10.1016/j.ijbiomac.2012.10.003.

    Article  CAS  Google Scholar 

  • Escudero, J. J., Ferrero, C., Casas, M., & Jiménez-Castellanos, M. R. (2012). Compaction properties, drug release kinetics and fronts movement studies of matrices combining mixtures of swellable and inert polymers. III: Effect of polymer substitution type. International Journal of Pharmaceutics, 434, 215–223. DOI: 10.1016/j.ijpharm.2012.05.027.

    Article  CAS  Google Scholar 

  • Fan, L., Tan, C., Wang, L., Pan, X., Cao, M., Wen, F., **e, W., & Nie, M. (2013). Preparation, characterization and the effect of carboxymethylated chitosan-cellulose derivatives hydrogels on wound healing. Journal of Applied Polymer Science, 128, 2789–2796. DOI: 10.1002/app.38456.

    Article  CAS  Google Scholar 

  • Fruk, L., Grondin, A., Smith, W. E., & Graham, D. (2002). A new approach to oligonucleotide labelling using Diels-Alder cycloadditions and detection by SERRS. Chemical Communications, 2002, 2100–2101. DOI: 10.1039/b204790j.

    Article  Google Scholar 

  • Goodwin, D. J., Picout, D. R., Ross-Murphy, S. B., Holland, S. J., Martini, L. G., & Lawrence, M. J. (2011). Ultrasonic degradation for molecular weight reduction of pharmaceutical cellulose ethers. Carbohydrate Polymers, 83, 843–851. DOI: 10.1016/j.carbpol.2010.08.068.

    Article  CAS  Google Scholar 

  • Granja, P. L., De Jéso, B., Bareille, R., Rouais, F., Baquey, C., & Barbosa, M. A. (2006). Cellulose phosphates as biomaterials. In vitro biocompatibility studies. Reactive & Functional Polymers, 66, 728–739. DOI: 10.1016/j.reactfunctpolym.2005.10.027.

    Article  CAS  Google Scholar 

  • Han, J., Lei, T., & Wu, Q. (2014). High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by welldispersed cellulose nanoparticles: Dynamic rheological properties and hydrogel formation mechanism. Carbohydrate Polymers, 102, 306–316. DOI: 10.1016/j.carbpol.2013.11.045.

    Article  CAS  Google Scholar 

  • Hao, J., & Weiss, R. A. (2013). Mechanical behavior of hybrid hydrogels composed of a physical and a chemical network. Polymer, 54, 2174–2182. DOI: 10.1016/j.polymer.2013.01.052.

    Article  CAS  Google Scholar 

  • Hardy, I. J., Windberg-Baarup, A., Neri, C., Byway, P. V., Booth, S. W., & Fitzpatrick, S. (2007). Modulation of drug release kinetics from hydroxypropyl methyl cellulose matrix tablets using polyvinyl pyrrolidone. International Journal of Pharmaceutics, 337, 246–253. DOI: 10.1016/j.ijpharm.2007.01.026.

    Article  CAS  Google Scholar 

  • Hill, K. W., Taunton-Rigby, J., Carter, J. D., Kropp, E., Vagle, K., Pieken, W., McGee, D. P. C., Husar, G. M., Leuck, M., Anziano, D. J., & Sebesta, D. P. (2001). Diels-Alder bioconjugation of diene-modified oligonucleotides. The Journal of Organic Chemistry, 66, 5352–5358. DOI: 10.1021/jo0100190.

    Article  CAS  Google Scholar 

  • Hu, X., Hu, K., Zeng, L., Zhao, M., & Huang, H. (2010). Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohydrate Polymers, 82, 62–68. DOI: 10.1016/j.carbpol.2010.04.023.

    Article  CAS  Google Scholar 

  • Jo, S., Kim, S., & Noh, I. (2012). Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromolecular Research, 20, 968–976. DOI: 10.1007/s13233-012-0138-7.

    Article  CAS  Google Scholar 

  • Karaaslan, M. A., Tshabalala, M. A., Yelle, D. J., & Buschle-Diller, G. (2011). Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydrate Polymers, 86, 192–201. DOI: 10.1016/j.carbpol.2011.04.030.

    Article  CAS  Google Scholar 

  • Katono, H., Maruyama, A., Sanui, K., Ogata, N., Okano, T., & Sakurai, Y. (1991). Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly(acrylic acid). Journal of Controlled Release, 16, 215–228. DOI: 10.1016/0168-3659(91)90045-f.

    Article  CAS  Google Scholar 

  • Khan, I. A., Anjum, K., Koya, P. A., & Kabir-ud-Din (2013). Effect of inorganic salts on the clouding behavior of hydroxypropyl methyl cellulose in presence of amphiphilic drugs. Colloids and Surfaces B: Biointerfaces, 103, 496–501. DOI: 10.1016/j.colsurfb.2012.10.028.

    Article  CAS  Google Scholar 

  • Kim, T. D., Luo, J., Tian, Y., Ka, J. W., Tucker, N. M., Haller, M., Kang, J. W., & Jen, A. K. Y. (2006). Diels-Alder “click chemistry” for highly efficient electrooptic polymers. Macromolecules, 39, 1676–1680. DOI: 10.1021/ma052087k.

    Article  CAS  Google Scholar 

  • Kowalczuk, J., Tritt-Goc, J., & Pi’slewski, N. (2004). The swelling properties of hydroxypropyl methyl cellulose loaded with tetracycline hydrochloride: magnetic resonance imaging study. Solid State Nuclear Magnetic Resonance, 25, 35–41. DOI: 10.1016/j.ssnmr.2003.03.016.

    Article  CAS  Google Scholar 

  • Kowalczuk, J., & Tritt-Goc, J. (2011). Effect of microwave irradiation on the hydroxypropyl methylcellulose powder and its hydrogel studied by magnetic resonance imaging. Carbohydrate Polymers, 83, 166–170. DOI: 10.1016/j.carbpol.2010.07.037.

    Article  CAS  Google Scholar 

  • Kuang, J., Yuk, K. Y., & Huh, K. M. (2011). Polysaccharidebased superporous hydrogels with fast swelling and superabsorbent properties. Carbohydrate Polymers, 83, 284–290. DOI: 10.1016/j.carbpol.2010.07.052.

    Article  CAS  Google Scholar 

  • Laity, P. R., & Cameron, R. E. (2010). Synchrotron X-ray microtomographic study of tablet swelling. European Journal of Pharmaceutics and Biopharmaceutics, 75, 263–276. DOI: 10.1016/j.ejpb.2010.02.009.

    Article  CAS  Google Scholar 

  • Laity, P. R., Mantle, M. D., Gladden, L. F., & Cameron, R. E. (2010). Magnetic resonance imaging and X-ray microtomography studies of a gel-forming tablet formulation. European Journal of Pharmaceutics and Biopharmaceutics, 74, 109–119. DOI: 10.1016/j.ejpb.2009.06.014.

    Article  CAS  Google Scholar 

  • Lamberti, G., Cascone, S., Cafaro, M. M, Titomanlio, G., d’Amore, M., & Barba, A. A. (2013). Measurements of water content in hydroxypropyl-methyl-cellulose based hydrogels via texture analysis. Carbohydrate Polymers, 92, 765–768. DOI: 10.1016/j.carbpol.2012.10.003.

    Article  CAS  Google Scholar 

  • Li, Y. M., Xu, G. Y., **n, X., Cao, X. R., & Wu, D. (2008). Dilational surface viscoelasticity of hydroxypropyl methyl cellulose and CnTAB at air-water surface. Carbohydrate Polymers, 72, 211–221. DOI: 10.1016/j.carbpol.2007.08.008.

    Article  CAS  Google Scholar 

  • Li, W., Sun, B., & Wu, P. (2009). Study on hydrogen bonds of carboxymethyl cellulose sodium film with two-dimensional correlation infrared spectroscopy. Carbohydrate Polymers, 78, 454–461. DOI: 10.1016/j.carbpol.2009.05.002.

    Article  CAS  Google Scholar 

  • Liu, S. Q., Joshi, S. C., & Lam, Y. C. (2008). Effects of salts in the Hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. Journal of Applied Polymer Science, 109, 363–372. DOI: 10.1002/app.28079.

    Article  CAS  Google Scholar 

  • Mohamed, R. R., Seoudi, R. S., & Sabaa, M.W. (2012). Synthesis and characterization of antibacterial semi-interpenetrating carboxymethyl chitosan/poly(acrylonitrile) hydrogels. Cellulose, 19, 947–958. DOI: 10.1007/s10570-012-9658-8.

    Article  CAS  Google Scholar 

  • Naik, S., Bhattacharjya, G., Talukdar, B., & Patel, B. K. (2004). Chemoselective acylation of amines in aqueous media. European Journal of Organic Chemistry, 2004, 1254–1260. DOI: 10.1002/ejoc.200300620.

    Article  Google Scholar 

  • Nimmo, C. M., Owen, S. C., & Shoichet, M. S. (2011). Diels-Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules, 12, 824–830. DOI: 10.1021/bm101446k.

    Article  CAS  Google Scholar 

  • Pygall, S. R., Kujawinski, S., Timmins, P., & Melia, C. D. (2009). Mechanisms of drug release in citrate buffered HPMC matrices. International Journal of Pharmaceutics, 370, 110–120. DOI: 10.1016/j.ijpharm.2008.11.022.

    Article  CAS  Google Scholar 

  • Qin, X., Lu, A., & Zhang, L. (2013). Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose, 20, 1669–1677. DOI: 10.1007/s10570-013-9961-z.

    Article  CAS  Google Scholar 

  • Ramasamy, T., Khandasami, U. S., Ruttala, H., & Shanmugam, S. (2012). Development of solid lipid nanoparticles enriched hydrogels for topical delivery of anti-fungal agent. Macro molecular Research, 20, 682–692. DOI: 10.1007/s13233-012-0107-1.

    Article  CAS  Google Scholar 

  • Sannino, A., Pappad`a, S., Madaghiele, M., Maffezzoli, A., Ambrosio, L., & Nicolais, L. (2005). Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer, 46, 11206–11212. DOI: 10.1016/j.polymer.2005.10.048.

    Article  CAS  Google Scholar 

  • Saxena, A., Kaloti, M., & Bohidar, H. B. (2011). Rheological properties of binary and ternary protein-polysaccharide cohydrogels and comparative release kinetics of salbutamol sulphate from their matrices. International Journal of Biological Macromolecules, 48, 263–270. DOI: 10.1016/j.ijbiomac.2010.11.008.

    Article  CAS  Google Scholar 

  • Sun, X. L., Yang, L. C., & Chaikof, E. L. (2008). Chemoselective immobilization of biomolecules through aqueous Diels-Alder and PEG chemistry. Tetrahedron Letters, 49, 2510–2513. DOI: 10.1016/j.tetlet.2008.02.111.

    Article  CAS  Google Scholar 

  • Tiwari, S., & Kumar, A. (2006). Diels-Alder reactions are faster in water than in ionic liquids at room temperature. Angewandte Chemie International Edition, 45, 4824–4825. DOI: 10.1002/anie.200600426.

    Article  CAS  Google Scholar 

  • Wang, Z. C., Xu, X. D., Chen, C. S., Wang, G. R., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2009). In situ formation of thermosensitive P(NIPAAm-co-GMA)/PEI hydrogels. Reactive & Functional Polymers, 69, 14–19. DOI: 10.1016/j.reactfunctpolym.2008.10.004.

    Article  CAS  Google Scholar 

  • Wei, H. L., Yang, Z., Chen, Y., Chu, H. J., Zhu, J., & Li, Z. C. (2010a). Characterisation of N-vinyl-2-pyrrolidonebased hydrogels prepared by a Diels-Alder click reaction in water. European Polymer Journal, 46, 1032–1039. DOI: 10.1016/j.eurpolymj.2010.01.025.

    Article  CAS  Google Scholar 

  • Wei, H. L., Yang, Z., Chu, H. J., Zhu, J., Li, Z. C., & Cui, J. S. (2010b). Facile preparation of poly(N-isopropylacrylamide)-based hydrogels via aqueous Diels-Alder click reaction. Polymer, 51, 1694–1702. DOI: 10.1016/j.polymer.2010.02.008.

    Article  CAS  Google Scholar 

  • Wei, H. L., Yang, J., Chu, H. J., Yang, Z., Ma, C. C., & Yao, K. (2011). Diels-Alder reaction in water for the straightforward preparation of thermoresponsive hydrogels. Journal of Applied Polymer Science, 120, 974–980. DOI: 10.1002/app.33116.

    Article  CAS  Google Scholar 

  • Wu, J., Liang, S., Dai, H., Zhang, X., Yu, X., Cai, Y., Zhang, L., Wen, N., Jiang, B., & Xu, J. (2010). Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydrate Polymers, 79, 677–684. DOI: 10.1016/j.carbpol.2009.09.022.

    Article  CAS  Google Scholar 

  • Xu, X. D., Chen, C. S., Lu, B., Wang, Z. C., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. (2009). Modular synthesis of thermosensitive P(NIPAAm-co-HEMA)/β-CD based hydrogels via click chemistry. Macromolecular Rapid Communications, 30, 157–164. DOI: 10.1002/marc.200800671.

    Article  CAS  Google Scholar 

  • YerriSwamy, B., Prasad, C. V., Reedy, C. L. N., Mallikarjuna, B., Rao, K. C., & Subha, M. C. S. (2011). Interpenetrating polymer network microspheres of hydroxypropyl methyl cellulose/poly (vinyl alcohol) for control release of ciprofloxacin hydrochloride. Cellulose, 18, 349–357. DOI: 10.1007/s10570-010-9475-x.

    Article  CAS  Google Scholar 

  • Yu, H. Q., & Cong, R. (2010). Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(l-lactide) via Michael-type addition reaction. Chemical Papers, 64, 619–624. DOI: 10.2478/s11696-010-0055-1.

    Article  CAS  Google Scholar 

  • Yue, Z., Wen, F., Gao, S., Ang, M. Y., Pallathadka, P. K., Liu, L., & Yu, H. (2010). Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials, 31, 8141–8152. DOI: 10.1016/j.biomaterials.2010.07.059.

    Article  CAS  Google Scholar 

  • Zhao, G. H., Kapur, N., Carlin, B., Selinger, E., & Guthrie, J. T. (2011). Characterisation of the interactive properties of microcrystalline cellulose-carboxymethyl cellulose hydrogels. International Journal of Pharmaceutics, 415, 95–101. DOI: 10.1016/j.ijpharm.2011.05.054.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Liang Wei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, GF., Chu, HJ., Wei, HL. et al. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels. Chem. Pap. 68, 1390–1399 (2014). https://doi.org/10.2478/s11696-014-0574-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0574-2

Keywords

Navigation