Log in

The collisions of two ion acoustic solitary waves in a magnetized nonextensive plasma

  • Research Article
  • Published:
Central European Journal of Physics

Abstract

Using the extended Poincaré-Lighthill-Kuo (EPLK) method, the interaction between two ion acoustic solitary waves (IASWs) in a multicomponent magnetized plasma (including Tsallis nonextensive electrons) has been theoretically investigated. The analytical phase shifts of the two solitary waves after interaction are estimated. The proposed model leads to rarefactive solitons only. The effects of colliding angle, ratio of number densities of (positive/negative) ions species to the density of nonextensive electrons, ion-to-electron temperature ratio, mass ratio of the negative-to-positive ions and the electron nonextensive parameter on the phase shifts are investigated numerically. The present results show that these parameters have strong effects on the phase shifts and trajectories of the two IASWs after collision. Evidently, this model is helpful for interpreting the propagation and the oblique collision of IASWs in magnetized multicomponent plasma experiments and space observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Sagdeev, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 4, p. 23.

  2. H. Ikezi, R. Taylor, D. Baker, Phys. Rev. Lett. 25, 11 (1970)

    Article  ADS  Google Scholar 

  3. R. Ichiki, M. Shindo, S. Yoshimura, T. Watanabe, Y. Kawai, Phys. Plasmas 8, 4275 (2001)

    Article  ADS  Google Scholar 

  4. B. A. Klumov, A. V. Ivlev, G. Morfill, JETP. Lett. 78, 300 (2003)

    Article  ADS  Google Scholar 

  5. N. Plihon, C. S. Corr, P. Chabert, Appl. Phys. Lett. 86, 091501 (2005)

    Article  ADS  Google Scholar 

  6. S. Ghosh, Phys. Plasmas 12, 094504 (2005)

    Article  ADS  Google Scholar 

  7. Z. X. Wang, X. L. Wang, W. Ren, J. Y. Liu, Y. Liu, Phys. Lett. A 339, 96 (2005)

    Article  ADS  Google Scholar 

  8. S. H. Kim, R. L. Merlino, Phys. Plasmas 13, 052118 (2006)

    Article  ADS  Google Scholar 

  9. R. L. Merlino, S. H. Kim, Appl. Phys. Lett. 89, 091501 (2006)

    Article  ADS  Google Scholar 

  10. Z. X. Wang, Y. Liu, L. W. Ren, J. Y. Liu, X. Wang, Thin Solid Films 506–507, 637 (2006)

    Article  Google Scholar 

  11. S. K. El-Labany, R. Sabry, W. F. El-Taibany, E. A. Elghmazd, Phys. Plasmas 17, 042301 (2010)

    Article  ADS  Google Scholar 

  12. W. F. El-Taibany, N. A. El-Bedwehy, E. F. El-Shamy, Phys. Plasmas 18, 033703 (2011)

    Article  ADS  Google Scholar 

  13. N. Plihon, P. Chabert, Phys. Plasmas 18, 082102 (2011)

    Article  ADS  Google Scholar 

  14. M. Bascal, G. W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979)

    Article  ADS  Google Scholar 

  15. R. A. Gottscho, C. E. Gaebe, IEEE T. Plasma Sci. 14, 92 (1986)

    Article  ADS  Google Scholar 

  16. H. Kokura, S. Yoneda, K. Nakamura, N. Mitsuhira, M. Nakamura, H. Sugai, Jpn. J. Appl. Phys. 38(Part 1), 5256 (1999)

    Article  ADS  Google Scholar 

  17. L. Boufendi, A. Bouchoule, Plasma Sources Sci. Technol. 11, A211 (2002)

    Article  ADS  Google Scholar 

  18. H. Massey, Negative Ions, 3rd ed. (Cambridge University Press, Cambridge, 1976), p. 663

    Google Scholar 

  19. P. H. Chaizy et al., Nature (London) 349, 393 (1991)

    Article  ADS  Google Scholar 

  20. A. J. Coates, F. J. Crary, G. R. Lewis, D. T. Young, J. H. Waite, Jr., E. C. Sittler Jr., Geophys. Res. Lett. 34, L22103, (2007)

    Article  ADS  Google Scholar 

  21. A. Y. Wong, D. L. Mamas, D. Arnush, Phys. Fluids 18, 1489 (1975)

    Article  ADS  Google Scholar 

  22. J. L. Cooney, M. T. Gavin, K. E. Lonngren, Phys. Fluids B 3, 2758 (1991)

    Article  ADS  Google Scholar 

  23. Y. Nakamura, T. Odagiri, I. Tsukabayashi, Plasma Phys. Control. Fus. 39, 105 (1997)

    Article  ADS  Google Scholar 

  24. Y. Nakamura, H. Bailung, K. E. Lonngren, Phys. Plasmas 6, 3466 (1999)

    Article  ADS  Google Scholar 

  25. B. Song, N. D’Angelo, R. L. Merlino, Phys. Fluids B 3, 284 (1991)

    Article  ADS  Google Scholar 

  26. N. Sato, Plasma Sources Sci. Technol. 3, 395 (1994)

    Article  ADS  Google Scholar 

  27. M. Rosenberg, R. L. Merlino, Planet. Space Sci. 55, 1464 (2007)

    Article  ADS  Google Scholar 

  28. R. Ichiki, S. Yoshimura, T. Watanabe, Y. Nakamura, Y. Kawai, Phys. Plasmas 9, 4481 (2002)

    Article  ADS  Google Scholar 

  29. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)

    Article  ADS  Google Scholar 

  30. S. P. Christon, D. G. Mitchell, D. J. Williams, L. A. Frank, C. Y. Huang, T. E. Eastman, J. Geophys. Res. 93, 2562, (1988)

    Article  ADS  Google Scholar 

  31. M. Maksimovic, V. Pierrard, P. Riley, Geophys. Res. Lett. 24, 1511, (1997)

    Article  Google Scholar 

  32. M. P. Leubner, Phys. Plasmas 11, 1308 (2004)

    Article  ADS  Google Scholar 

  33. A. Treumann, Phys. Scr. 59, 19 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, (Springer, New York, 2009)

    Google Scholar 

  35. A. Rényi, Acta Math. Acad. Sci. Hung. 6, 285 (1955)

    Article  MATH  Google Scholar 

  36. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. J. A. S. Lima, R. Silva, Jr., J. Santos, Phys. Rev. E 61, 3260 (2000)

    Article  ADS  Google Scholar 

  38. S. Abe, S. Martínez, F. Pennini, A. Plastino, Phys. Lett. A 281, 126 (2001)

    Article  ADS  MATH  Google Scholar 

  39. G. Kaniadakis, Phys. Lett. A 288, 283 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. M. P. Leubner, Z. Vörös, Nonlinear Proc. Geoph. 12, 171 (2005)

    Article  ADS  Google Scholar 

  41. M. P. Leubner, Nonlinear Proc. Geoph. 15, 531 (2008)

    Article  ADS  Google Scholar 

  42. H. J. Haubold, D. Kumar, Astropart. Phys. 29, 70 (2008)

    Article  ADS  Google Scholar 

  43. N. G. de Almeida, Physica A 387, 2745 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. L. Liyan, J. Du, Physica A 387, 4821 (2008)

    Article  ADS  Google Scholar 

  45. G. Livadiotis, J. Math. Chem. 45, 930 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. R. Hanel, S. Thurner, Phys. Lett. A 373, 1415 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. M. Tribeche, L. Djebarni, R. Amour, Phys. Plasmas 17, 042114 (2010)

    Article  ADS  Google Scholar 

  48. W. F. El-Taibany, M. Tribeche, Phys. Plasmas 19, 024507 (2012)

    Article  ADS  Google Scholar 

  49. C. H. Su, R. M. Mirie, J. Fluid Mech. 98, 509 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. E. F. El-Shamy, Phys. Plasmas 16, 113704 (2009)

    Article  ADS  Google Scholar 

  51. S. K. El-Labany, E. F. El-Shamy, M. Abu El-Eneen, Astrophys. Space Sci. 337, 275 (2012)

    Article  ADS  MATH  Google Scholar 

  52. C. S. Gardner, J. M. Greener, M. D. Krskal, R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  53. H. Demiray, J. Comput. Appl. Math., 206,2, 826 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, P. K. Shukla, Phys. Lett. A 374, 960 (2010)

    Article  ADS  MATH  Google Scholar 

  55. E. F. El-Shamy, W. F. El-Taibany, E. K. El-Shewy, K. H. El-Shorbagy, Astrophys Space Sci. 338, 279 (2012).

    Article  ADS  Google Scholar 

  56. U. N. Ghosh, P. Chatterjee, R. Roychoudhury, Phys. Plasmas 19, 012113 (2012)

    Article  ADS  Google Scholar 

  57. J. K. Xue, Chin. Phys. 15, 562 (2006)

    Article  ADS  Google Scholar 

  58. G. Z. Liang, J. N. Han, M. M. Lin, J. N. Wei, W. S. Duan, Phys. Plasmas 16, 073705 (2009)

    Article  ADS  Google Scholar 

  59. S. K. El-Labany, E. F. El-Shamy, M. Shokry, Phys. Plasmas 17, 113706 (2010)

    Article  ADS  Google Scholar 

  60. Y. X. Xu, Z. M. Liu, M. M. Lin, Y. R. Shi, J. M. Chen, W. S. Duan, Phys. Plasmas 18, 052301 (2011)

    Article  ADS  Google Scholar 

  61. Y. X. Xu, Z. M. Liu, M. M. Lin, Y. R. Shi, J. M. Chen, W. S. Duan, Phys. Plasmas 18, 084702 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad F. El-Shamy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shamy, E.F., Tribeche, M. & El-Taibany, W.F. The collisions of two ion acoustic solitary waves in a magnetized nonextensive plasma. centr.eur.j.phys. 12, 805–812 (2014). https://doi.org/10.2478/s11534-014-0504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11534-014-0504-5

Keywords

Navigation