Log in

Potentiation of the Immune System by Schiff Base-Forming Drugs

Mechanism of Action and Therapeutic Potential

  • Review Article
  • Immunology-Based Agents
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

CD4+ T lymphocytes, which orchestrate immune responses, receive a cognitive signal when clonally distributed receptors are occupied by peptides bound to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells. The latter cells provide costimulatory or accessory signals through macro-molecules such as B7.1 and B7.2, which interact with coreceptors on T cells to regulate outcomes in terms of T cell activation or specific nonresponsiveness. Complementary studies of the interactions between antigen-presenting cells and T helper cells at the chemical level have implicated Schiff base formation between specialised carbonyls and amines, constitutively expressed on the surfaces of antigen-presenting cells and T cells, as an essential element in specific T cell activation. Small Schiff base-forming molecules can substitute for the natural donor of carbonyl groups and provide a costimulatory signal to the T cell.

From this class of Schiff base-forming costimulatory molecules, the small xenobiotic substituted benzaldehyde, tucaresol, has been selected for development and testing as an immunopotentiatory drug. Tucaresol, which is orally bioavailable and systemically active, enhances CD4+ T helper cell and CD8+ cytotoxic T cell responses in vivo, and selectively favours a T helper 1 profile of cytokine production. In murine models of virus infection and syngeneic tumour growth it has substantial therapeutic activity. Schiff base formation by tucaresol on T cell surface amines provides a costimulatory signal to the T cell through a mechanism that activates clofilium-sensitive K+ and Na+ transport. The pathway utilised by tucaresol converges with T cell receptor signalling at the level of mitogen-activated protein (MAP) kinase, promoting the activation of MAP kinase kinase (MEK) and consequential tyrosyl phosphorylation of ERK2.

Tucaresol is the first orally active, mechanism-based immunopotentiatory drug available for therapeutic testing. It is currently undergoing phase I/II clinical trials in chronic hepatitis B virus infection, HIV infection and malignant melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hendrick SM, Eidelman FJ. T lymphocyte antigen receptors. In: Paul W, editor. Fundamental immunology. 3rd ed. New York: Raven Press, 1993: 383–420

    Google Scholar 

  2. Weiss A. T lymphocyte activation. In: Paul W, editor. Fundamental immunology. 3rd ed. New York: Raven Press, 1993: 467–504

    Google Scholar 

  3. Lenschow DJ, Bluestone JA. T cell costimulation and in vivo tolerance. Curr Opin Immunol 1993; 5: 747–52

    Article  PubMed  CAS  Google Scholar 

  4. Whittington R, Faulds D. Interleukin-2: a review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 1993; 46: 446–514

    Article  PubMed  CAS  Google Scholar 

  5. Klima N, Pataraca R, Walling J, et al. Clinical and immunological changes in AIDS patients following adoptive therapy with activated autologous CD8 T cells and interleukin-2 infusion. AIDS 1994; 8: 1073–81

    Article  Google Scholar 

  6. Hendrzak JA, Brunda MJ. Interleukin-12: biologic activity, therapeutic utility, and role in disease. Lab Invest 1995; 72: 619–37

    PubMed  CAS  Google Scholar 

  7. Tahara H, Lotze MT. Anti-tumor effects of interleukin 12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Gene Ther 1995; 2: 96–106

    PubMed  CAS  Google Scholar 

  8. Nabel GJ, Chang AE, Nabel EG, et al. Immunotherapy for cancer by direct gene transfer into tumors. Hum Gene Ther 1994; 5: 57–77

    Article  PubMed  CAS  Google Scholar 

  9. Fenton RT, Sznol M, Luster DG, et al. A phase I trial of B7-transfected or parental lethally irradiated allogeneic melanoma cell lines to induce cell-mediated immunity against tumor associated antigen presented by HLA-A2 or HLA-A1 in patients with stage IV melanoma. NCI protocol T93-0161. BRMP protocol 9401. Hum Gene Ther 1994; 5: 1385–99

    Article  Google Scholar 

  10. Rhodes J. Evidence for an intercellular covalent reaction essential in antigen specific T-cell activation. J Immunol 1989; 143: 1482–89

    PubMed  CAS  Google Scholar 

  11. Gao X-M, Rhodes J. An essential role for constitutive Schiff base-forming ligands in antigen presentation to murine T cell clones. J Immunol 1990; 144: 2883–90

    PubMed  CAS  Google Scholar 

  12. Rhodes J. E-rosettes provide an analogue for Schiff base formation in specific T cell activation. J Immunol 1990; 145: 463–9

    PubMed  CAS  Google Scholar 

  13. Rhodes J, Zheng B, Lifely MR. Inhibition of specific T cell activation by monosaccharides is through their reactivity as aldehydes. Immunology 1992; 75: 629–31

    Google Scholar 

  14. Zheng B, Brett S, Tite JP, et al. Galactose oxidation in the design of immunogenic vaccines. Science 1992; 256: 1560–3

    Article  PubMed  CAS  Google Scholar 

  15. Rhodes J, Chen H, Hall SR, et al. Therapeutic potentiation of the immune system by costimulatory Schiff base forming drugs. Nature 1995; 377: 71–5

    Article  PubMed  CAS  Google Scholar 

  16. Thompson CB. Distinct roles for the costimulatory ligands B7-1 and B7-2 in T helper cell differentiation? Cell 1995; 81: 979–82

    Article  PubMed  CAS  Google Scholar 

  17. Bluestone JA. New perspectives on CD28-B7-mediated T cell costimulation. Immunity 1995; 2: 555–9

    Article  PubMed  CAS  Google Scholar 

  18. Allison JP. CD28-B7 interactions in T-cell activation. Curr Opin Immunol 1994; 6: 414–9

    Article  PubMed  CAS  Google Scholar 

  19. Leach DR, Krummel MF, Allison JP. Enhancement of anti-tumour immunity by CTLA-4 blockade. Science 1996; 271: 1734–6

    Article  PubMed  CAS  Google Scholar 

  20. Bell GM, Imboden JB. CD2 and the regulation of T cell anergy. J Immunol 1995; 155: 2805–7

    PubMed  CAS  Google Scholar 

  21. Hargreaves R, Logiou V, Lechler R. The primary alloresponse of human CD4+ T-cells is dependent on B7 (CD80), augmented by CD58, but relatively uninfluenced by CD54 expression. Int Immunol 1995; 7: 1501–13

    Article  Google Scholar 

  22. Shevach EM. Accessory molecules. In: Paul W, editor. Fundamental immunology. 3rd ed. New York: Raven Press, 1995: 531–75

    Google Scholar 

  23. August A, Dupont B. CD28 of T lymphocytes associates with phosphatidylinositol 3-kinase. Int Immunol 1994; 6: 769–77

    Article  PubMed  CAS  Google Scholar 

  24. August AS, Gibson Y, Kawakami T, et al. CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc Natl Acad Sci USA 1994; 91: 9347–50

    Article  PubMed  CAS  Google Scholar 

  25. Li W, Whaley CD, Mondino A, et al. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T-cells. Science 1996; 271: 1272–6

    Article  PubMed  CAS  Google Scholar 

  26. Fields PE, Gajewski TF, Fitch F. Blocked Ras activation in anergic CD4+ T-cells. Science 1996; 271: 1276–8

    Article  PubMed  CAS  Google Scholar 

  27. Vogelzang NJ, Lestingi TM, Sudakoff G, et al. Phase I study of immunotherapy of metastatic renal cell carcinoma by direct gene transfer into metastatic lesions. Hum Gene Ther 1994; 5: 1357–70

    Article  PubMed  CAS  Google Scholar 

  28. Rubin J, Charboneau JW, Reading C, et al. Phase I study of immunotherapy of hepatic metastases of colorectal cancer by direct gene transfer. Hum Gene Ther 1994; 5: 1371–84

    Article  Google Scholar 

  29. Goedegeburne PS, Douville LM, Richmond DC, et al. Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: a pilot study. J Clin Oncol 1995; 13: 1939–49

    Google Scholar 

  30. Bauer M, Reaman GH, Hank JA, et al. A phase II trial of human recombinant interleukin-2 administered as a 4-day continuous infusion for children with refractory neuroblastoma, non-Hodgkins lymphoma, sarcoma, renal cell carcinoma, and malignant melanoma: a Childrens Cancer Group study. Cancer 1995; 75: 2959–65

    Article  PubMed  CAS  Google Scholar 

  31. Heaton KM, Grimm EA. Cytokine combinations in immunotherapy for solid tumors: a review. Cancer Immunol Immunother 1993; 37: 213–9

    Article  PubMed  CAS  Google Scholar 

  32. O’Garra A, Murphy K. Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 1994 6: 458–66

    Article  PubMed  Google Scholar 

  33. Del-Prete G, Maggi E, Romagnani S. Human Th 1 and Th2 cells: functional properties, mechanisms of regulation, and role in disease. Lab Invest 1994; 70: 299–306

    PubMed  CAS  Google Scholar 

  34. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–46

    Article  PubMed  CAS  Google Scholar 

  35. Gately MK, Gubler U, Brunda MJ, et al. Interleukin 12: a cytokine with therapeutic potential in oncology and infectious disease. Ther Immunol 1994; 1: 187–96

    PubMed  CAS  Google Scholar 

  36. Clerici M, Shearer GM. The Th1-Th2 hypothesis of HIV infection: new insights. Immunol Today 1994; 15: 575–81

    Article  PubMed  CAS  Google Scholar 

  37. Snell EE, Dimari SJ. Schiff base intermediates in enzyme catalysis. In: Boyer PD, editor. The enzymes: kinetics and mechanism. Vol 2. London: Academic Press, 1973: 335–46

    Google Scholar 

  38. John RA. Pyridoxal phosphate-dependent enzymes. Biochim Biophys Acta 1995; 1248: 81–96

    Article  PubMed  Google Scholar 

  39. Fersht A. Covalent catalysis. In: Enzyme structure and mechanism. 2nd ed. New York: W.H. Freeman, 1984: 69–97

    Google Scholar 

  40. Van der Meer RA, Duine JA. Covalently bound pyrroloquinoline quinone is the organic prosthetic group of human placental lysyl oxidase. Biochem J 1986; 239: 789–91

    PubMed  Google Scholar 

  41. Stryer L. Excitable membranes and sensory systems. In: Biochemistry. 3rd ed. New York: W.H. Freeman, 1988: 1005–41

    Google Scholar 

  42. Mukohata Y. Comparative studies on ion pumps of the bacterial rhodopsin family. Biophys Chem 1994; 50: 191–201

    Article  PubMed  CAS  Google Scholar 

  43. Sasaki J, Brown, LS, Chon Y-S, et al. Conversion of bacteriorhodopsin into a chloride ion pump. Science 1995; 269: 73–5

    Article  PubMed  CAS  Google Scholar 

  44. Rolan PE, Parker JE, Gray SJ, et al. The pharmacokinetics, tolerability and pharmacodynamics of tucaresol (589C80; 4-[2-formyl-3-hydroxyphenoxymethyl]benzoic acid), a potential anti-sickling agent, following oral administration to healthy subjects. Br J Pharmacol 1993; 35: 419–25

    Article  CAS  Google Scholar 

  45. Seger R, Krebs EG. The MAPK signalling cascade. FASEB J 1995; 9: 726–35

    PubMed  CAS  Google Scholar 

  46. Dudley DT, Pang L, Decker SJ, et al. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92: 7686–9

    Article  PubMed  CAS  Google Scholar 

  47. Greenlaw R, Robinson P, Heaton T, et al. Transfection of HLADR-expressing DAP.3 cells with a cDNA clone encoding the glycosyl phosphatidylinositol-linked form of lymphocyte function associated antigen-3: biochemical features and functional consequences. Int Immunol 1992; 4: 673–80

    Article  PubMed  CAS  Google Scholar 

  48. Wyss DF, Choi JS, Maria JL, et al. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 1995; 269: 1273–8

    Article  PubMed  CAS  Google Scholar 

  49. Malkovsky M, Edwards AJ, Hunt R, et al. T-cell mediated enhancement of host-versus-graft reactivity in mice fed a diet enriched with vitamin A acetate. Nature 1983; 302: 338–40

    Article  PubMed  CAS  Google Scholar 

  50. Malkovsky M, Medawar PB, Thatcher DR, et al. Acquired immunological tolerance of foreign cells is impaired by recombinant interleukin 2 or vitamin A acetate. Proc Natl Acad Sci USA 1985; 82: 536–8

    Article  PubMed  CAS  Google Scholar 

  51. Buck J, Derguini F, Levi E, et al. Intracellular signalling by 14-hydroxy-4,14-retro-retinol. Science 1991; 254: 1645–56

    Article  Google Scholar 

  52. Derguini F, Nakanishi K, Hämmerling U, et al. Intracellular signaling activity of synthetic (14R)-, (14S)-, and (14RS)-14-hydroxy-4,14-retro-retinol. Biochemistry 1994; 33: 623–8

    Article  PubMed  CAS  Google Scholar 

  53. Meydani SN, Ribaya-Mercado JD, Russell RM, et al. Vitamin B6 deficiency impairs interleukin 2 production and lymphocyte proliferation in elderly adults. Am J Clin Nutr 1991; 53: 1275–80

    PubMed  CAS  Google Scholar 

  54. Rall C, Meydani SN. Vitamin B6 and immune competence. Nutr Rev 1993; 51: 217–25

    Article  PubMed  CAS  Google Scholar 

  55. Deeg HJ. Ultraviolet irradiation in transplant biology: manipulation of immunity and imunogenicity. Transplantation 1988; 45: 845–51

    Article  PubMed  CAS  Google Scholar 

  56. Ullrich SE, Modulation of immunity by ultraviolet radiation: key effects on antigen presentation. J Invest Dermatol 1995; 105 (1 Suppl.): 30–6S

    Article  Google Scholar 

  57. Kripke ML. Ultraviolet radiation and immunology: something new under the sun [presidential address]. Cancer Res 1994; 54: 6102–5

    PubMed  CAS  Google Scholar 

  58. Soltysik S, Wu JY, Recchia J, et al. Structure/function analysis of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 1995; 13: 1403–10

    Article  PubMed  CAS  Google Scholar 

  59. Apostolopoulos A, Pieterz GA, Loveland BE, et al. Oxidative/ reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc Natl Acad Sci USA 1995; 92: 10128–32

    Article  PubMed  CAS  Google Scholar 

  60. Tzianobos AO, Onderdonk AB, Rosner B, et al. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 1993; 262: 416–9

    Article  Google Scholar 

  61. Tzianobos AO, Onderdonk AB, Smith RS, et al. Structure-function relationships for polysaccharide-induced intra-abdominal abscesses. Infect Immun 1994; 62: 3590–3

    Google Scholar 

  62. Sherman DI, Williams R. Liver damage: mechanisms and management. Br Med Bull 1994; 50: 124–38

    PubMed  CAS  Google Scholar 

  63. Edmonds SE, Ellis G, Gaffney K, et al. Hypoxia and the rheumatoid joint: immunological and therapeutic implications. Scand J Rheumatol Suppl 1995; 101: 163–8

    Article  PubMed  CAS  Google Scholar 

  64. Love RA, Rader JI, Crofford LJ, et al. Pathological and immunological effects of ingesting L-tryptophan and 1,1′-ethylidenebis-(L-tryptophan) in Lewis rats. J Clin Invest 1993; 91: 804–11

    Article  PubMed  CAS  Google Scholar 

  65. Dreskell WJ, Ashley DL, Grainger J, et al. Identification of decomposition products of 1,1′-ethylidenebis-(L-tryptophan), a compound associated with eosinophilia-myalgia syndrome. Bull Environ Contam Toxicol 1992; 48: 679–87

    Google Scholar 

  66. Pol S. Immunotherapy of chronic hepatitis B by anti HBV vaccine. Biomed Pharmacother 1995; 49: 105–9

    Article  PubMed  CAS  Google Scholar 

  67. Redfield RR, Birx DL. HIV-specific vaccine therapy: concepts, status, and future directions. AIDS Res Hum Retrovir 1992; 8: 1051–8

    Article  PubMed  CAS  Google Scholar 

  68. Barth A, Hoon DS, Foshag LJ, et al. Polyvalent melanoma cell vaccine induces delayed-type hypersensitivity and in vitro cellular immune response. Cancer Res 1994; 54: 3342–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Hall, S., Zheng, B. et al. Potentiation of the Immune System by Schiff Base-Forming Drugs. BioDrugs 7, 217–231 (1997). https://doi.org/10.2165/00063030-199707030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199707030-00005

Keywords

Navigation