Log in

A Rapid Spectrofluorometric Method for the Determination of Aluminum at Nano-trace Levels in Some Real, Environmental, Biological, Hemodialysis, Food, Pharmaceutical, and Soil Samples Using 2′,3,4′,5,7-Pentahydroxyflavone

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A very simple and non-extractive spectrofluorometric method for the swift determination of aluminum at nano-trace levels using 2′,3,4′,5,7-pentahydroxyflavone (morin) has been developed. Morin reacts in a slightly acidic (0.005 - 0.025 M H2SO4) solution with aluminum in 20% ethanol to produce a highly fluorescent complex in aqueous solution, which has excitation and emission wavelengths of λex = 270 and λem = 565 nm, respectively. Linear calibration graphs were obtained for 0.01 - 800 μg L−1 of Al, providing a detection limit of 1 ng L−1. The limit of quantification of the reaction system was 10 ng L−1. The stoichiometric composition of chelate is 3:2 (Al:morin). The developed method was successfully used in the determination of aluminum in several Standard Reference Materials (SRM) as well as in some water, biological, hemodialysis solutions, food, pharmaceutical, soil sample, and complex synthetic mixtures. The results of the proposed method for biological and food analysis were found to be in excellent agreement with those obtained by AAS. The results of the proposed method for hemodialysis solutions were analogous with those obtained using the method described in British Pharmacopoeia within 95% confidence limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ferro and A. Saccone, “Intermetallic Chemistry”, 2008, Elsevier, Amsterdam.

    Google Scholar 

  2. A. Afkhami, T. Madrakian, A. Shirzadmehr, M. Tabatabaee, and H. Bagheri, Sens. Actuators, B, 2012, 774, 237.

    Article  Google Scholar 

  3. M. R. Awual, T. Yaita, and H. Shiwaku, Chem. Eng. J., 2013, 228, 327.

    Article  CAS  Google Scholar 

  4. A. Kumar, S. Babu, A. S. Karakoti, A. Schulte, and S. Seal, Langmuir, 2009, 25, 10998.

    Article  CAS  PubMed  Google Scholar 

  5. S. Ishiura and T. Yoshida, Proceedings of the Japan Academy, Series B, 2019, 95, 290.

    Article  CAS  Google Scholar 

  6. C. Melcher and J. Schweitzer, IEEE Trans. Nucl. Sci., 1992, 39, 502.

    Article  CAS  Google Scholar 

  7. A. Shmyreva, A. Borisov, and N. Maksimchuk, Nanotechnologies in Russia, 2010, 5, 382.

    Article  Google Scholar 

  8. M. Ozawa, M. Kimura, and A. Isogai, J. Alloy. Compd., 1993, 793, 73.

    Article  Google Scholar 

  9. Y. Watanabe, V. Kain, T. Tonozuka, T. Shoji, T. Kondo, and F. Masuyama, Scripta Mater., 2000, 42, 307.

    Article  CAS  Google Scholar 

  10. Y. Zhu, Anal. Sci., 2019, 35, 1295.

    Article  CAS  PubMed  Google Scholar 

  11. M. Uemoto, M. Makino, Y. Ota, H. Sakaguchi, Y. Shimizu, and K. Sato, Anal. Sci., 2018, 34, 719.

    Article  CAS  PubMed  Google Scholar 

  12. D. Cheng, X. Zhang, X. Li, L. Hou, and C. Wang, Anal. Sci., 2017, 33, 185.

    Article  CAS  PubMed  Google Scholar 

  13. A. Masi and R. Olsina, Talanta, 1993, 40, 931.

    Article  CAS  PubMed  Google Scholar 

  14. N. P. Zaksas and A. F. Veryaskin, Anal. Sci., 2017, 33, 605.

    Article  CAS  PubMed  Google Scholar 

  15. M. J. Ahmed, M. T. Islam, and F. Hossain, RSC Adv., 2018, 8, 5509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. Li, Y. Zhang, and M. Yin, Analyst, 1997, 122, 543.

    Article  CAS  Google Scholar 

  17. S. B. Khoo and J. Zhu, Electroanalysis, 1999, 11, 546.

    Article  CAS  Google Scholar 

  18. H. L. Greenhaus, A. Feibush, and L. Gordon, Anal. Chem., 1957, 29, 1531.

    Article  CAS  Google Scholar 

  19. L. Gordon and A. Feibush, Anal. Chem., 1955, 27, 1050.

    Article  CAS  Google Scholar 

  20. M. A. Omar, D. M. Nagy, and M. E. Halim, Luminescence, 2019, 34, 84.

    CAS  PubMed  Google Scholar 

  21. P. Sarma and L. H. Dieter, Talanta, 1966, 13, 347.

    Article  CAS  PubMed  Google Scholar 

  22. J. Wang, P. A. Farias, and J. S. Mahmoud, Anal. Chim. Acta, 1985, 171, 215.

    Article  CAS  Google Scholar 

  23. E. Yildiz, Ş. Saçmaci, M. Saçmaci, and A. Ülgen, Food Chem., 2017, 237, 942.

    Article  CAS  PubMed  Google Scholar 

  24. M. Mánuel-Vez, C. Moreno, D. Gonzalez, and M. Garcia-Vargas, Anal. Chim. Acta, 1997, 355, 157.

    Article  Google Scholar 

  25. J. G. Sen, Talanta, 1984, 31, 1053.

    Article  Google Scholar 

  26. H. D. Porter, J. Am. Chem. Soc., 1954, 76, 127.

    Article  CAS  Google Scholar 

  27. A. I. Vogel and G. Jeffery, “Vogel’s Textbook of Quantitative Chemical Analysis”, 1989, Longman Scientific and Technical, England, Wiley, New York.

    Google Scholar 

  28. A. K. Mukherji, “Analytical Chemistry of Zirconium and Hafnium: International Series of Monographs in Analytical Chemistry”, 2013, Pergamon Press, Oxford.

    Google Scholar 

  29. B. K. Pal and B. Chaudhury, Microchim. Acta, 1985, 85, 437.

    Article  Google Scholar 

  30. S. M. Al-Kindy, Z. Al-Mafrigi, M. S. Shongwe, and F. E. O. Suliman, Luminescence, 2011, 26, 462.

    Article  CAS  PubMed  Google Scholar 

  31. S. B. Gündüz, S. Küçükkolbaşý, O. Atakol, and E. Kýlýç, Spectrochim. Acta, Part A, 2005, 61, 913.

    Article  Google Scholar 

  32. F. B. M. Suah, M. Ahmad, and L. Y. Heng, Sens. Actuators, B, 2014, 201, 490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jamaluddin Ahmed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, F., Begum, S., Jahan, I. et al. A Rapid Spectrofluorometric Method for the Determination of Aluminum at Nano-trace Levels in Some Real, Environmental, Biological, Hemodialysis, Food, Pharmaceutical, and Soil Samples Using 2′,3,4′,5,7-Pentahydroxyflavone. ANAL. SCI. 36, 813–819 (2020). https://doi.org/10.2116/analsci.19P443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P443

Keywords

Navigation