Log in

Abstract

For each fLp(ℝ) (1 ⩽ p < ∞) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p, a norm is defined so that the space of Fourier transforms is isometrically isomorphic to Lp(ℝ). There is an exchange theorem and inversion in norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. A. Abdelhakim: On the unboundedness in Lq of the Fourier transform of Lp functions. Available at https://arxiv.org/abs/1806.03912 (2020), 8 pages.

  2. K. I. Babenko: An inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961), 531–542. (In Russian.)

    MathSciNet  Google Scholar 

  3. W. Beckner: Inequalities in Fourier analysis. Ann. Math. (2) 102 (1975), 159–182.

    Article  MathSciNet  Google Scholar 

  4. S. Bochner: Lectures on Fourier Integrals. Annals of Mathematics Studies 42. Princeton University Press, Princeton, 1959.

    Book  Google Scholar 

  5. W. F. Donoghue, Jr.: Distributions and Fourier Transforms. Pure and Applied Mathematics 32. Academic Press, New York, 1969.

    Google Scholar 

  6. A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi: Tables of Integral Transforms. Vol. I. McGraw-Hill, New York, 1954.

    Google Scholar 

  7. G. B. Folland: Real Analysis: Modern Techniques and Their Applications. John Wiley, New York, 1999.

    Google Scholar 

  8. F. G. Friedlander: Introduction to the Theory of Distributions. Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  9. L. Grafakos: Classical Fourier Analysis. Graduate Texts in Mathematics 249. Springer, New York, 2008.

    Book  Google Scholar 

  10. E. H. Lieb, M. Loss: Analysis. Graduate Studies in Mathematics 14. AMS, Providence, 2001.

    Google Scholar 

  11. R. M. McLeod: The Generalized Riemann Integral. The Carus Mathematical Monographs 20. The Mathematical Association of America, Washington, 1980.

    Book  Google Scholar 

  12. E. M. Stein, G. Weiss: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton, 1971.

    Google Scholar 

  13. E. Talvila: The distributional Denjoy integral. Real Anal. Exch. 33 (2007/08), 51–82.

    Article  MathSciNet  Google Scholar 

  14. E. Talvila: Fourier transform inversion using an elementary differential equation and a contour integral. Am. Math. Mon. 126 (2019), 717–727.

    Article  MathSciNet  Google Scholar 

  15. E. C. Titchmarsh: A contribution to the theory of Fourier transforms. Proc. Lond. Math. Soc. (2) 23 (1924), 279–289.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Talvila.

Additional information

Dedicated to the memory of Jaroslav Kurzweil

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talvila, E. The Fourier transform in Lebesgue spaces. Czech Math J (2024). https://doi.org/10.21136/CMJ.2024.0001-23

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.21136/CMJ.2024.0001-23

Keywords

MSC 2020

Navigation