Log in

Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=−0.961, P<0.01) between the expansion of the cytosine sequence length in the C-stretch of HVS-I and a reduction in the number of upstream adenines. These results indicate that the C-stretch could be a useful genetic maker in forensic identification of Chinese populations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M., Engstrom, A.S., Meyers, S., Handt, O., Saldeen, T., von Haeseler, A., Paabo, S., Gyllensten, U., 1998. Mitochondrial DNA sequencing of shed hairs and saliva on robbery caps: sensitivity and matching probabilities. J Forensic Sci., 43(3):453–464.

    PubMed  CAS  Google Scholar 

  • Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., et al., 1981. Sequence and organization of the human mitochondrial genome. Nature, 290(5806):457–465. [doi:10.1038/290457a0]

    Article  PubMed  CAS  Google Scholar 

  • Andrews, R.M., Kubacka, I., Chinnery, P.F., Lightowlers, R.N., Turnbull, D.M., Howell, N., 1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet., 23(2):147. [doi:10.1038/13779]

    Article  PubMed  CAS  Google Scholar 

  • Barbosa, A.B., da Silva, L.A., Azevedo, D.A., Balbino, V.Q., Mauricio-da-Silva, L., 2008. Mitochondrial DNA control region polymorphism in the population of Alagoas state, north-eastern Brazil. J. Forensic. Sci., 53(1):142–146. [doi:10.1111/j.1556-4029.2007.00619.x]

    Article  PubMed  Google Scholar 

  • Bini, C., Pappalardo, G., 2005. mtDNA HVI length heteroplasmic profile in different tissues of maternally related members. Forensic. Sci. Int., 152(1):35–38. [doi:10.1016/j.forsciint.2005.03.006]

    Article  PubMed  CAS  Google Scholar 

  • Bowling, A.C., Mutisya, E.M., Walker, L.C., Price, D.L., Cork, L.C., Beal, M.F., 1993. Age-dependent impairment of mitochondrial function in primate brain. J. Neurochem., 60(5):1964–1967. [doi:10.1111/j.1471-4159.1993.tb13430.x]

    Article  PubMed  CAS  Google Scholar 

  • Brandon, M.C., Lott, M.T., Nguyen, K.C., Spolim, S., Navathe, S.B., Baldi, P., Wallace, D.C., 2005. MITOMAP: a human mitochondrial genome database-2004 update. Nucleic. Acids. Res., 33(Database Issue):D611–D613. [doi: 10.1093/nar/gki079]

    PubMed  CAS  Google Scholar 

  • Brown, W.M., Prager, E.M., Wang, A., Wilson, A.C., 1982. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol., 18(4):225–239. [doi:10.1007/BF01734101]

    Article  PubMed  CAS  Google Scholar 

  • Carracedo, A., Bar, W., Lincoln, P., Mayr, W., Morling, N., Olaisen, B., Schneider, P., Budowle, B., Brinkmann, B., Gill, P., et al., 2000. DNA commission of the international society for forensic genetics: guidelines for mitochondrial DNA ty**. Forensic. Sci. Int., 110(2):79–85. [doi:10.1016/S0379-0738(00)00161-4]

    Article  PubMed  CAS  Google Scholar 

  • Chen, M.H., Lee, H.M., Tzen, C.Y., 2002. Polymorphism and heteroplasmy of mitochondrial DNA in the D-loop region in Taiwanese. J. Formos. Med. Assoc., 101(4):268–276.

    PubMed  CAS  Google Scholar 

  • Cooper, J.M., Mann, V.M., Schapira, A.H., 1992. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J. Neurol. Sci., 113(1):91–98. [doi:10.1016/0022-510X(92)90270-U]

    Article  PubMed  CAS  Google Scholar 

  • Du, R., Yip, V.F., 1993. Ethnic Groups in China. Science Press, Bei**g, China.

    Google Scholar 

  • Howell, N., Smejkal, C.B., 2000. Persistent heteroplasmy of a mutation in the human mtDNA control region: hypermutation as an apparent consequence of simple-repeat expansion/contraction. Am. J. Hum. Genet., 66(5):1589–1598. [doi:10.1086/302910]

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi, K., Parsons, T.J., Yoshino, M., Holland, M.M., 2002. A new database of mitochondrial DNA hypervariable regions I and II sequences from 162 Japanese individuals. Int. J. Legal. Med., 116(2):68–73. [doi:10.1007/s004140100211]

    Article  PubMed  CAS  Google Scholar 

  • Ingman, M., Kaessmann, H., Pääbo, S., Gyllensten, U., 2000. Mitochondrial genome variation and the origin of modern humans. Nature, 408(6813):708–713. [doi:10.1038/35047064]

    Article  PubMed  CAS  Google Scholar 

  • Irwin, J.A., Saunier, J.L., Niederstatter, H., Strouss, K.M., Sturk, K.A., Diegoli, T.M., Brandstatter, A., Parson, W., Parsons, T.J., 2009. Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J. Mol. Evol., 68(5):516–527. [doi:10.1007/s00239-009-9227-4]

    Article  PubMed  CAS  Google Scholar 

  • Kirches, E., Michael, M., Warich-Kirches, M., Schneider, T., Weis, S., Krause, G., Mawrin, C., Dietzmann, K., 2001. Heterogeneous tissue distribution of a mitochondrial DNA polymorphism in heteroplasmic subjects without mitochondrial disorders. J. Med. Genet., 38(5):312–317. [doi:10.1136/jmg.38.5.312]

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.C., Li, S.H., Lin, J.C., Wu, C.C., Yeh, D.C., Wei, Y.H., 2004. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat. Res., 547(1–2):71–78. [doi: 10.1016/j.mrfmmm.2003.12.011]

    PubMed  CAS  Google Scholar 

  • Lee, H.Y., Chung, U., Yoo, J.E., Park, M.J., Shin, K.J., 2004. Quantitative and qualitative profiling of mitochondrial DNA length heteroplasmy. Electrophoresis, 25(1):28–34. [doi:10.1002/elps.200305681]

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.Y., Chung, U., Park, M.J., Yoo, J.E., Han, G.R., Shin, K.J., 2006. Differential distribution of human mitochondrial DNA in somatic tissues and hairs. Ann. Hum. Genet., 70(Pt 1):59–65. [doi:10.1111/j.1529-8817.2005.00217.x]

    Article  PubMed  CAS  Google Scholar 

  • Lutz-Bonengel, S., Sanger, T., Pollak, S., Szibor, R., 2004. Different methods to determine length heteroplasmy within the mitochondrial control region. Int. J. Legal. Med., 118(5):274–281. [doi:10.1007/s00414-004-0457-0]

    Article  PubMed  Google Scholar 

  • Lutz-Bonengel, S., Schmidt, U., Sanger, T., Heinrich, M., Schneider, P.M., Pollak, S., 2008. Analysis of mitochondrial length heteroplasmy in monozygous and non-monozygous siblings. Int. J. Legal. Med., 122(4):315–321. [doi:10.1007/s00414-008-0240-8]

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., 1994. China’s Minority Nationalities. Foreign Languages Press, Bei**g, China.

    Google Scholar 

  • Mabuchi, T., Susukida, R., Kido, A., Oya, M., 2007. Ty** the 1.1 kb control region of human mitochondrial DNA in Japanese individuals. J. Forensic. Sci., 52(2):355–363. [doi:10.1111/j.1556-4029.2006.00366.x]

    Article  PubMed  CAS  Google Scholar 

  • Macaulay, V., Richards, M., Hickey, E., Vega, E., Cruciani, F., Guida, V., Scozzari, R., Bonne-Tamir, B., Sykes, B., Torroni, A., 1999. The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs. Am. J. Hum. Genet., 64(1):232–249. [doi:10.1086/302204]

    Article  PubMed  CAS  Google Scholar 

  • Malik, S., Sudoyo, H., Pramoonjago, P., Sukarna, T., Darwis, D., Marzuki, S., 2002a. Evidence for the de novo regeneration of the pattern of the length heteroplasmy associated with the T16189C variant in the control (D-loop) region of mitochondrial DNA. J. Hum. Genet., 47(3):122–130. [doi:10.1007/s100380200013]

    Article  PubMed  CAS  Google Scholar 

  • Malik, S., Sudoyo, H., Pramoonjago, P., Suryadi, H., Sukarna, T., Njunting, M., Sahiratmadja, E., Marzuki, S., 2002b. Nuclear mitochondrial interplay in the modulation of the homopolymeric tract length heteroplasmy in the control (D-loop) region of the mitochondrial DNA. Hum. Genet., 110(5):402–411. [doi:10.1007/s00439-002-0717-3]

    Article  PubMed  CAS  Google Scholar 

  • Meierhofer, D., Mayr, J.A., Foetschl, U., Berger, A., Fink, K., Schmeller, N., Hacker, G.W., Hauser-Kronberger, C., Kofler, B., Sperl, W., 2004. Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinoma. Carcinogenesis, 25(6):1005–1010. [doi:10.1093/carcin/bgh104]

    Article  PubMed  CAS  Google Scholar 

  • Montanini, L., Regna-Gladin, C., Eoli, M., Albarosa, R., Carrara, F., Zeviani, M., Bruzzone, M.G., Broggi, G., Boiardi, A., Finocchiaro, G., 2005. Instability of mitochondrial DNA and MRI and clinical correlations in malignant gliomas. J. Neuro-Oncol., 74(1):87–89. [doi:10.1007/s11060-004-4036-5]

    Article  CAS  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei, M., 1996. Phylogenetic analysis in molecular evolutionary genetics. Annu. Rev. Genet., 30(1):371–403. [doi:10.1146/annurev.genet.30.1.371]

    Article  PubMed  CAS  Google Scholar 

  • Ota, T., 1993. DISPAN: Genetic Distance and Phylogenetic Analysis. Institute of Molecular Evolutionary Genetics, Pennsylvania State University, PA, USA.

    Google Scholar 

  • Pfeiffer, H., Lutz-Bonengel, S., Pollak, S., Fimmers, R., Baur, M.P., Brinkmann, B., 2004. Mitochondrial DNA control region diversity in hairs and body fluids of monozygotic triplets. Int. J. Legal. Med., 118(2):71–74. [doi:10.1007/s00414-003-0409-0]

    Article  PubMed  Google Scholar 

  • Salas, A., Lareu, M.V., Carracedo, A., 2001. Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report. Int. J. Legal. Med., 114(3):186–190. [doi:10.1007/s004140000164]

    Article  PubMed  CAS  Google Scholar 

  • Sangkhathat, S., Kusafuka, T., Yoneda, A., Kuroda, S., Tanaka, Y., Sakai, N., Fukuzawa, M., 2005. Renal cell carcinoma in a pediatric patient with an inherited mitochondrial mutation. Pediatr. Surg. Int., 21(9):745–748. [doi:10.1007/s00383-005-1471-0]

    Article  PubMed  Google Scholar 

  • Schneider, S., Roessli, D., Excoffier, L., 2000. Arlequin: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Stoneking, M., Hedgecock, D., Higuchi, R.G., Vigilant, L., Erlich, H.A., 1991. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am. J. Hum. Genet., 48(2):370–382.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis. Mol. Biol. Evol., 24(8):1596–1599. [doi:10.1093/molbev/msm092]

    Article  PubMed  CAS  Google Scholar 

  • Tan, D.J., Bai, R.K., Wong, L.J., 2002. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res., 62(4):972–976.

    PubMed  CAS  Google Scholar 

  • Walsh, P.S., Metzger, D.A., Higuchi, R., 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based ty** from forensic material. Biotechniques, 10(4):506–513.

    PubMed  CAS  Google Scholar 

  • Watson, E., Bauer, K., Aman, R., Weiss, G., von Haeseler, A., Paabo, S., 1996. mtDNA sequence diversity in Africa. Am. J. Hum. Genet., 59(2):437–444.

    PubMed  CAS  Google Scholar 

  • Yen, T.C., Chen, Y.S., King, K.L., Yeh, S.H., Wei, Y.H., 1989. Liver mitochondrial respiratory functions decline with age. Biochem. Biophys. Res. Commun., 165(3):994–1003. [doi:10.1016/0006-291X(89)92701-0]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Chen.

Additional information

The two authors contributed to this work equally

Project supported by the Sciences and Technological Fundamental Resources Data of the Ministry of Education, China (No. 505015) and the Key Project for Science and Technology of Shaanxi Province, China (No. 2004K09-G12)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Dang, Yh., Yan, Cx. et al. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups. J. Zhejiang Univ. Sci. B 10, 711–720 (2009). https://doi.org/10.1631/jzus.B0920140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0920140

Key words

CLC number

Navigation