Log in

Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach

基于状态向量法分析功能梯度一维六方压电准晶层合板的静态响应

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The effect of the non-homogeneity of material properties has been considered the important variation mechanism in the static responses of quasicrystal structures, but the existing theoretical model for it is unable to simulate the material change format beyond the exponential function. In this paper, we create a new model of functionally graded multilayered 1D piezoelectric quasicrystal plates using the state vector approach, in which varying functionally graded electro-elastic properties can be extended from exponential to linear and higher order in the thickness direction. Based on the state equations, an analytical solution for a single plate has been derived, and the result for the corresponding multilayered case is obtained utilizing the propagator matrix method. The present study shows, in particular, that coefficient orders of two varying functions (the power function and the exponential function) of the material gradient provide the ability to tailor the mechanical behaviors in the system’s phonon, phason, and electric fields. Moreover, the insensitive points of phonon stress and electric potential under functionally graded effects in the quasicrystal layer are observed. In addition, the influences of stacking sequences and discontinuity of horizontal stress are explored in the simulation by the new model. The results are very useful for the design and understanding of the characterization of functionally graded piezoelectric quasicrystal materials in their applications to multilayered systems.

摘 要

目 的

功能梯度准晶材料有助于减缓层合板界面处的应力集中现象, 提高层间粘接**度, 从而提升层合板表面的耐磨性。 本文旨在建立功能梯度压电准晶层合板的力学模型, 并研究功能梯度变化和叠放顺序对层合板的影响。

创新点

  1. 1.

    首次将状态向量法推广到功能梯度压电准晶板的分析中;

  2. 2.

    假设功能梯度函数的变化形式为幂函数和指数函数;

  3. 3.

    在准晶层中观察到声子场应力和电势的不敏感点。

方 法

  1. 1.

    通过联立三大基本方程, 推导出准晶板的状态方程, 并求解该微分方程, 得到单层准晶板的解析解;

  2. 2.

    通过引入功能梯度函数, 使解析解中的描述各材料特性的值能够沿厚度方向呈现梯度变化;

  3. 3.

    采用传递矩阵法, 求出多层准晶板的解析解;

  4. 4.

    通过仿真模拟, 将所得结果与已有文献进行对比, 验证所提方法的可行性和有效性。

结 论

  1. 1.

    准晶层合板中的功能梯度效应随着梯度参数的增加而增大, 且材料参数的变化对声子场、 相位子场以及电场的响应均产生影响。

  2. 2.

    在功能梯度效应下, 从准晶层中观察到了声子场应力和电势的不敏感点。

  3. 3.

    与准晶作为中间层相比, 准晶作为表层时机械载荷引起的位移响应更小。 研究结果可以为压电准晶元器件的设计提供理论参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alibeigloo A, 2018. Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method. Mechanics of Advanced Materials and Structures, 25(9):766–784. https://doi.org/10.1080/15376494.2017.1308585

    Article  Google Scholar 

  • Altay G, Dökmeci MC, 2012. On the fundamental equations of piezoelasticity of quasicrystal media. International Journal of Solids and Structures, 49(23-24):3255–3262. https://doi.org/10.1016/j.ijsolstr.2012.06.016

    Article  Google Scholar 

  • Chan KC, Qu NS, Zhu D, 2002. Fabrication of graded nickelquasicrystal composite by electrodeposition. Transactions of the IMF, 80(6):210–213. https://doi.org/10.1080/00202967.2002.11871470

    Article  Google Scholar 

  • Chen WQ, Lee KY, 2003. Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. International Journal of Solids and Structures, 40(21):5689–5705. https://doi.org/10.1016/S0020-7683(03)00339-1

    Article  MATH  Google Scholar 

  • Ding DH, Yang WG, Hu CZ, et al., 1993. Generalized elasticity theory of quasicrystals. Physical Review B, 48(10): 7003–7010. https://doi.org/10.1103/PhysRevB.48.7003

    Article  Google Scholar 

  • Dubois JM, 2005. Useful Quasicrystals. World Scientific, Singapore, Singapore, p.45–56.

    Book  Google Scholar 

  • Fan TY, 2010. Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Science Press, Bei**g, China, p.118–120 (in Chinese).

    Google Scholar 

  • Fan TY, 2013. Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering, 5(4):407–448. https://doi.org/10.4236/eng.2013.54053

    Article  Google Scholar 

  • Fujiwara T, de Laissardière GT, Yamamoto S, 1994. Electronic structure and electron transport in quasicrystals. Materials Science Forum, 150-151:387–394. https://doi.org/10.4028/www.scientific.net/msf.150-151.387

    Article  Google Scholar 

  • Gao Y, Zhao BS, 2009. General solutions of three-dimensional problems for two-dimensional quasicrystals. Applied Mathematical Modelling, 33(8):3382–3391. https://doi.org/10.1016/j.apm.2008.11.001

    Article  MathSciNet  MATH  Google Scholar 

  • Guo JH, Chen JY, Pan EN, 2016. Size-dependent behavior of functionally graded anisotropic composite plates. International Journal of Engineering Science, 106:110–124. https://doi.org/10.1016/j.ijengsci.2016.05.008

    Article  MathSciNet  MATH  Google Scholar 

  • Hu CZ, Wang RH, Ding DH, et al., 1997. Piezoelectric effects in quasicrystals. Physical Review B, 56(5):2463–2468. https://doi.org/10.1103/PhysRevB.56.2463

    Article  Google Scholar 

  • Hu WF, Liu YH, 2015. A new state space solution for rectangular thick laminates with clamped edges. Chinese Journal of Theoretical and Applied Mechanics, 47(5): 762–771 (in Chinese). https://doi.org/10.6052/0459-1879-15-033

    Google Scholar 

  • Levinson M, Cooke DW, 1983. Thick rectangular plates—I: the generalized Navier solution. International Journal of Mechanical Sciences, 25(3):199–205. https://doi.org/10.1016/0020-7403(83)90093-0

    Article  MATH  Google Scholar 

  • Li LH, Liu GT, 2012. Stroh formalism for icosahedral quasicrystal and its application. Physics Letters A, 376(8-9): 987–990. https://doi.org/10.1016/j.physleta.2012.01.027

    Article  Google Scholar 

  • Li XF, **e LY, Fan TY, 2013. Elasticity and dislocations in quasicrystals with 18-fold symmetry. Physics Letters A, 377(39):2810–2814. https://doi.org/10.1016/j.physleta.2013.08.033

    Article  MathSciNet  MATH  Google Scholar 

  • Li XY, Ding HJ, Chen WQ, 2006. Pure bending of simply supported circular plate of transversely isotropic functionally graded material. Journal of Zhejiang University SCIENCE A, 7(8):1324–1328. https://doi.org/10.1631/jzus.2006.A1324

    Article  MATH  Google Scholar 

  • Li XY, Li PD, Wu TH, et al., 2014. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Physics Letters A, 378(10):826–834. https://doi.org/10.1016/j.physleta.2014.01.016

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Yang LZ, Gao Y, 2017. An exact solution for a functionally graded multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mechanica, in press. https://doi.org/10.1007/s00707-017-2028-8

    Google Scholar 

  • Louzguine-Luzgin DV, Inoue A, 2008. Formation and properties of quasicrystals. Annual Review of Materials Research, 38:403–423. https://doi.org/10.1146/annurev.matsci.38.060407.130318

    Article  Google Scholar 

  • Mikaeeli S, Behjat B, 2016. Three-dimensional analysis of thick functionally graded piezoelectric plate using EFG method. Composite Structures, 154:591–599. https://doi.org/10.1016/j.compstruct.2016.07.067

    Article  Google Scholar 

  • Móricz F, 1989. On Λ2-strong convergence of numerical sequences and Fourier series. Acta Mathematica Hungarica, 54(3-4):319–327. https://doi.org/10.1007/BF01952063

    Article  MathSciNet  MATH  Google Scholar 

  • Pan E, Han F, 2005. Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science, 43(3-4):321–339. https://doi.org/10.1016/j.ijengsci.2004.09.006

    Article  Google Scholar 

  • Qing GH, Wang L, Zhang XH, 2017. Analytical solution of composite laminates with two opposite sides clamped and other sides free boundary. Machinery Design & Manufacture, (2):161–164 (in Chinese). https://doi.org/10.3969/j.issn.1001-3997.2017.02.045

    Google Scholar 

  • Shechtman D, Blech I, Gratias D, et al., 1984. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53(20):1951–1953. https://doi.org/10.1103/PhysRevLett.53.1951

    Article  Google Scholar 

  • Sheng HY, Wang H, Ye JQ, 2007. State space solution for thick laminated piezoelectric plates with clamped and electric open-circuited boundary conditions. International Journal of Mechanical Sciences, 49(7):806–818. https://doi.org/10.1016/j.ijmecsci.2006.11.012

    Article  Google Scholar 

  • Sladek J, Sladek V, Pan E, 2013. Bending analyses of 1D orthorhombic quasicrystal plates. International Journal of Solids and Structures, 50(24):3975–3983. https://doi.org/10.1016/j.ijsolstr.2013.08.006

    Article  Google Scholar 

  • Sun TY, Guo JH, Zhang XY, 2018. Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect. Applied Mathematics and Mechanics (English Edition), 39(3):335–352. https://doi.org/10.1007/s10483-018-2309-9

    Article  MathSciNet  MATH  Google Scholar 

  • Suresh S, Mortensen A, 1998. Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behavior of Graded Metals and Metal-ceramic Composites. IOM Communications, London, UK, p.156–163.

    Google Scholar 

  • Timoshenko SP, Goodier JN, 1970. Theory of Elasticity. McGraw-Hill, New York, USA, p.78–82.

    MATH  Google Scholar 

  • Wang JG, Chen LF, Fang SS, 2003. State vector approach to analysis of multilayered magneto-electro-elastic plates. International Journal of Solids and Structures, 40(7): 1669–1680. https://doi.org/10.1016/S0020-7683(03)00027-1

    Article  MATH  Google Scholar 

  • Wang X, Zhang JQ, Guo XM, 2005. Two kinds of contact problems in decagonal quasicrystalline materials of point group 10 mm. Acta Mechanica Sinica, 37(2):169–174 (in Chinese). https://doi.org/10.3321/j.issn:0459-1879.2005.02.007

    Google Scholar 

  • Xu WS, Wu D, Gao Y, 2017. Fundamental elastic field in an infinite plane of two-dimensional piezoelectric quasicrystal subjected to multi-physics loads. Applied Mathematical Modelling, 52:186–196. https://doi.org/10.1016/j.apm.2017.07.014

    Article  MathSciNet  Google Scholar 

  • Yang B, Ding HJ, Chen WQ, 2012. Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported. Applied Mathematical Modelling, 36(1):488–503. https://doi.org/10.1016/j.apm.2011.07.020

    Article  MathSciNet  MATH  Google Scholar 

  • Yang LZ, Gao Y, Pan EN, et al., 2015. An exact closed-form solution for a multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mechanica, 226(11):3611–3621. https://doi.org/10.1007/s00707-015-1395-2

    Article  MathSciNet  MATH  Google Scholar 

  • Yaslan HÇ, 2013. Equations of anisotropic elastodynamics in 3D quasicrystals as a symmetric hyperbolic system: deriving the time-dependent fundamental solutions. Applied Mathematical Modelling, 37(18-19):8409–8418. https://doi.org/10.1016/j.apm.2013.03.039

    Article  MathSciNet  MATH  Google Scholar 

  • Ying J, Lü CF, Lim CW, 2009. 3D thermoelasticity solutions for functionally graded thick plates. Journal of Zhejiang University SCIENCE A, 10(3):327–336. https://doi.org/10.1631/jzus.A0820406

    Article  MATH  Google Scholar 

  • Zhao MH, Dang HY, Fan CY, et al., 2017. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material. Part 1: theoretical solution. Engineering Fracture Mechanics, 179:59–78. https://doi.org/10.1016/j.engfracmech.2017.04.019

    Article  Google Scholar 

  • Zhao MH, Li Y, Fan CY, et al., 2018. Analysis of arbitrarily shaped planar cracks in two-dimensional hexagonal quasicrystals with thermal effects. Part I: theoretical solutions. Applied Mathematical Modelling, 57:583–602. https://doi.org/10.1016/j.apm.2017.07.023

    Article  MathSciNet  Google Scholar 

  • Zhou YB, Li XF, 2018. Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip. Engineering Fracture Mechanics, 189:133–147. https://doi.org/10.1016/j.engfracmech.2017.10.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11472299 and 51704015) and the China Agricultural University Education Foundation (No. 1101-240001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Yz., Li, Y., Yang, Lz. et al. Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach. J. Zhejiang Univ. Sci. A 20, 133–147 (2019). https://doi.org/10.1631/jzus.A1800472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1800472

Key words

关键词

CLC number

Navigation