Log in

Impact of polypropylene fibers on the rheological, mechanical, and thermal properties of self-compacting concrete

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The objective of this experimental investigation is to examine the impact of using polypropylene fibers on the properties of self-compacting concrete (SCC). Five mixtures were prepared, one reference concrete (without fibers) and four other SCC containing, 0.05, 0.1, 0.15, and 0.2% of polypropylenes fibers. Rheological (slump flow, yield stress, and plastic viscosity) and mechanical (compressive strength) properties as well as the thermal conductivity and porosity were evaluated. The results indicate that increasing fibers percentage affect negatively the workability and compressive strength of concrete. For example, addition of 0.2% of polypropylene fibers fell the mixes outside the range of self-compacting concretes and reduced their compressive strength by 20% compared to reference concrete. For the same percentage of fibers (0.2%), results revealed an increase of 23% of the total porosity in comparison with reference concrete. Interestingly, increasing polypropylene fibers’ percentage decreased remarkably the thermal conductivity of concrete; enhancing thus its thermal performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. M.A. da Silva, M. Pepe, R.G.M. de Andrade, M.S. Pfeil, R.D. Toledo Filho, Rheological and mechanical behavior of high strength steel fiber-river gravel self compacting concrete. Constr. Build. Mater. 150, 606–618 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.030

    Article  Google Scholar 

  2. H. Achak, M.R. Sohrabi, S.O. Hoseini, Effects of microsilica and polypropylene fibers on the rheological properties, mechanical parameters and durability characteristics of green self-compacting concrete containing ceramic wastes. Constr. Build. Mater. 392, 131890 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131890

    Article  CAS  Google Scholar 

  3. J. Safari, M. Mirzaei, H. Rooholamini, A. Hassani, Effect of rice husk ash and macro-synthetic fibre on the properties of self-compacting concrete. Constr. Build. Mater. 175, 371–380 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.207

    Article  CAS  Google Scholar 

  4. S.O. Hoseini, M.R. Sohrabi, S.R. Mousavi, M. Ghasemi, Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoret. Appl. Fract. Mech. 121, 103421 (2022). https://doi.org/10.1016/j.tafmec.2022.103421

    Article  Google Scholar 

  5. A. Sadrmomtazi, S.H. Gashti, B. Tahmouresi, Residual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures. Constr. Build. Mater. 230, 116969 (2020). https://doi.org/10.1016/j.conbuildmat.2019.116969

    Article  Google Scholar 

  6. I. Irki, F. Debieb, E.-H. Kadri, O. Boukendakdji, M. Bentchikou, H. Soualhi, Effect of the length and the volume fraction of wavy steel fibers on the behavior of self-compacting concrete. J. Adhes. Sci. Technol. 31, 735–748 (2017). https://doi.org/10.1080/01694243.2016.1231394

    Article  CAS  Google Scholar 

  7. A. Khaloo, E. Molaei Raisi, P. Hosseini, H. Tahsiri, Mechanical performance of self-compacting concrete reinforced with steel fibers. Constr. Build. Mater. 51, 179–186 (2014). https://doi.org/10.1016/j.conbuildmat.2013.10.054

    Article  Google Scholar 

  8. I. Bentegri, O. Boukendakdji, E.-H. Kadri, T.T. Ngo, H. Soualhi, Rheological and tribological behaviors of polypropylene fiber reinforced concrete. Constr. Build. Mater. 261, 119962 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119962

    Article  CAS  Google Scholar 

  9. O. Karahan, C.D. Atiş, The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 32, 1044–1049 (2011). https://doi.org/10.1016/j.matdes.2010.07.011

    Article  CAS  Google Scholar 

  10. V. Afroughsabet, T. Ozbakkaloglu, Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 94, 73–82 (2015). https://doi.org/10.1016/j.conbuildmat.2015.06.051

    Article  CAS  Google Scholar 

  11. D. Gueciouer, G. Youcef, N. Tarek, Rheological and mechanical optimization of a steel fiber reinforced self-compacting concrete using the design of experiments method. Eur. J. Environ. Civ. Eng. 26, 1097–1117 (2022). https://doi.org/10.1080/19648189.2019.1697758

    Article  Google Scholar 

  12. A.T. Abdelrazik, K.H. Khayat, Effect of fiber characteristics on fresh properties of fiber-reinforced concrete with adapted rheology. Constr. Build. Mater. 230, 116852 (2020). https://doi.org/10.1016/j.conbuildmat.2019.116852

    Article  CAS  Google Scholar 

  13. M.G. Alberti, A. Enfedaque, J.C. Gálvez, The effect of fibres in the rheology of self-compacting concrete. Constr. Build. Mater. 219, 144–153 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.173

    Article  CAS  Google Scholar 

  14. K. Liu, L. Lu, F. Wang, W. Liang, Theoretical and experimental study on multi-phase model of thermal conductivity for fiber reinforced concrete. Constr. Build. Mater. 148, 465–475 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.043

    Article  CAS  Google Scholar 

  15. A. Karimipour, J. De Brito, M. Edalati, RETRACTED: Influence of polypropylene fibres on the thermal and acoustic behaviour of untreated coal coarse aggregates concrete. J. Build. Eng. 36, 102125 (2021). https://doi.org/10.1016/j.jobe.2020.102125

    Article  Google Scholar 

  16. M.H. Beigi, J. Berenjian, O. Lotfi Omran, A. Sadeghi Nik, I.M. Nikbin, An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Design 50, 1019–1029 (2013). https://doi.org/10.1016/j.matdes.2013.03.046

    Article  CAS  Google Scholar 

  17. M.S. Meddah, M. Bencheikh, Properties of concrete reinforced with different kinds of industrial waste fibre materials. Constr. Build. Mater. 23, 3196–3205 (2009). https://doi.org/10.1016/j.conbuildmat.2009.06.017

    Article  Google Scholar 

  18. EN 12350-8, (2019).

  19. H. Soualhi, E.-H. Kadri, T.-T. Ngo, A. Bouvet, F. Cussigh, Z.-E.-A. Tahar, Design of portable rheometer with new vane geometry to estimate concrete rheological parameters. J. Civil Eng. Manag. 23, 347–355 (2016). https://doi.org/10.3846/13923730.2015.1128481

    Article  Google Scholar 

  20. H. Soualhi, E.-H. Kadri, A. Bouvet, T.-T. Ngo, F. Cussigh, A.-S.-E. Belaidi, New model to estimate plastic viscosity of eco-friendly and conventional concrete. Constr. Build. Mater. 135, 323–334 (2017). https://doi.org/10.1016/j.conbuildmat.2017.01.009

    Article  CAS  Google Scholar 

  21. EN 12390–3, 2019—Testing hardened concrete—Part 3: Compressive strength of test specimens, (2019).

  22. AFPC-AFREM, Durabilité des bétons : Méthodes recommandées pour la mesure des grandeurs associées à la durabilité, (2007).

  23. ASTM D5334–00, Standard Test Methods for Determining of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. Annual book of ASTM standards, (2000).

  24. M. Hacini, A.S. Benosman, N. Kazi Tani, M. Mouli, Y. Senhadji, A. Badache, N. Latroch, Utilization and assessment of recycled polyethylene terephthalate strap** bands as lightweight aggregates in Eco-efficient composite mortars. Constru. Build. Mater. 270, 121427 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121427

    Article  CAS  Google Scholar 

  25. EN 206/CN, (2022).

  26. M. Tabatabaeian, A. Khaloo, A. Joshaghani, E. Hajibandeh, Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC. Constr. Build. Mater. 147, 497–509 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.181

    Article  CAS  Google Scholar 

  27. V. Kočí, E. Vejmelková, D. Koňáková, V. Pommer, S. Grzeszczyk, A. Matuszek-Chmurowska, A. Mordak, R. Černý, Basic physical, mechanical, thermal and hygric properties of reactive powder concrete with basalt and polypropylene fibers after high-temperature exposure. Constr. Build. Mater. 374, 130922 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130922

    Article  CAS  Google Scholar 

  28. L. Shen, G. Di Luzio, M. Cao, Q. Ren, X. Ren, M. Jiang, D. Zhu, X. Yao, Insights and theoretical model of thermal conductivity of thermally damaged hybrid steel-fine polypropylene fiber-reinforced concrete. Cement Concr. Compos. 138, 105001 (2023). https://doi.org/10.1016/j.cemconcomp.2023.105001

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization [Mohammed Barka, Omar Taleb, Ahmed Kamel Tedjditi, Hamza Soualhi, Ahmed Soufiane Benosman, Mohamed Mouli]. Methodology [Mohammed Barka, Omar Taleb, Ahmed Kamel Tedjditi, Hamza Soualhi, Ahmed Soufiane Benosman, Mohamed Mouli]. Validation [Mohammed Barka, Omar Taleb, Ahmed Kamel Tedjditi,]. Formal analysis [Mohammed Barka, Ahmed Kamel Tedjditi]. Investigation [Mohammed Barka, Ahmed Kamel Tedjditi]. Writing original draft [Mohammed Barka, Ahmed Kamel Tedjditi]. Writing-review & editing [Mohammed Barka, Ahmed Kamel Tedjditi]. Visualization. [Mohammed Barka, Omar Taleb, Ahmed Kamel Tedjditi, Hamza Soualhi, Ahmed Soufiane Benosman, Mohamed Mouli]. Resources [Mohammed Barka, Omar Taleb, Mohamed Mouli]. Supervision [Omar Taleb, Hamza Soualhi]. Project administration [Omar Taleb].

Corresponding author

Correspondence to Mohammed Barka.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barka, M., Taleb, O., Tedjditi, A.K. et al. Impact of polypropylene fibers on the rheological, mechanical, and thermal properties of self-compacting concrete. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00905-1

Navigation