Log in

Simulation features of atom jumps at constant temperature and under different pressure by the Molecular Dynamics

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In our work we discuss features of atomic jump simulation. Then we present a new approach (approach of natural thermostat) that fully takes into account the fluctuating character of atomic jumps at the constant temperature Molecular Dynamics (MD) simulation. In addition the combination of MD and modified method of MS allowed within this model to take into account thermal expansion of the lattice and long-range elastic displacement of the atoms in the vicinity of defects. With the developed model, we study features of atom diffusion in iron by vacancy mechanism at different temperatures using a many-body potential. Migration energy and pre-exponential factor are obtained and a comparison of the calculated diffusion parameters with the results of the work of other authors who used various modelling methods is carried out. We then developed our approach to take into account the effect of pressure on diffusion jumps of atoms. This made it possible to calculate the temperature dependence of the migration volume.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The corresponding author confirm that the all data used for finding these new findings (results) are available in the original article.

References

  1. J.W. Christian, The Theory of Phase Transformations in Metals and Alloys (Pergamon, Oxford, 1965)

    Google Scholar 

  2. R.W. Balluffi, S.M. Allen, M.C. Carter, Kinetics of Materials (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  3. P.G. Shewmon, Diffusion in Solids (McGraw-Hill Book Company, Warrendale, 1989), p. 244

    Google Scholar 

  4. J.R. Manning, Diffusion Kinetics for Atoms in Crystals (D. Van Nostrand Company, Inc., Princeton, 1968), p. 257

    Google Scholar 

  5. J.P. Stark, Solid State Diffusion (Wiley-Interscience, New York, 1976), p. 237

    Google Scholar 

  6. H. Mehrer, Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes Springer Series in Solid-State Sciences. (Springer, Berlin, 2007), p. 651

    Google Scholar 

  7. S. Yip, Handbook of Materials Modeling (Springer, Dordrecht, 2005)

    Book  Google Scholar 

  8. R.A. Johnson, Phys. Rev. 134(5A), 1329–1336 (1964)

    Article  CAS  Google Scholar 

  9. N. Kurita, H. Numakura, Z. Metallkd. 95, 876–879

  10. I.V. Valikova, A.V. Nazarov, Phys. Met. Metallogr. 109, 220–226 (2010)

    Article  Google Scholar 

  11. G.J. Ackland, D.J. Bacon, A.F. Calder, T. Harry, Philos. Mag. A 75(3), 713–732 (1997)

    Article  CAS  Google Scholar 

  12. J.W. Jang, J. Kwon, B.J. Lee, Scr. Mater. 63, 39–42 (2010)

    Article  CAS  Google Scholar 

  13. B.J. Lee, M.I. Baskes, Phys. Rev. B 62, 8564 (2010)

    Article  Google Scholar 

  14. A.G. Mikhin, Yu.N. Osetsky, J. Phys. Condens. Matter 5, 9121–9129 (1993)

    Article  CAS  Google Scholar 

  15. V.G. Kapinos, Yu.N. Osetskii, P.A. Platonov, J. Nucl. Mater. 184, 221–229 (1991)

    Article  CAS  Google Scholar 

  16. V.G. Vaks, V.G. Kapinos, Yu.N. Osetskii, A.V. Trefilov, G.D. Samolyuk, Fiz. Tverd. Tela 31, 139 (1989)

    CAS  Google Scholar 

  17. K. Furderer, K.P. Doring, M. Gladisch et al., Mater. Sci. Forum 15, 125–131 (1978)

    Google Scholar 

  18. I.V. Valikova, A.V. Nazarov, A.A. Mikheev, Defect Diffus. Forum 249, 55–60 (2006)

    Article  CAS  Google Scholar 

  19. I.V. Valikova, A.V. Nazarov, Defect Diffus. Forum 277, 125–132 (2008)

    Article  CAS  Google Scholar 

  20. I.V. Valikova, A.V. Nazarov, Phys. Met. Metallogr. 105, 544–552 (2008)

    Article  Google Scholar 

  21. D.W. Heerman, Computer Simulation Methods in Theoretical Physics, 2nd edn. (Springer, Berlin, 1990)

    Book  Google Scholar 

  22. W.G. Hoover, Physica A 18, 111 (1983)

    Article  Google Scholar 

  23. S. Melchionna, G. Ciccotti, B.L. Holian, Mol. Phys. 78, 533–534 (1993)

    Article  CAS  Google Scholar 

  24. A.B. Germanov, I.V. Ershova, E.V. Kislitskaya, A.V. Nazarov, A.G. Zaluzhnyi, Met. Phys. Adv. Technol. 35(10), 1391–1403 (2013)

    Google Scholar 

  25. M.A. Boboqambarova, Diploma (2020)

  26. H.R. Schober, W. Petry, J. Trampenau, J. Phys. Condens. Matter 4, 9321–9338 (1992)

    Article  CAS  Google Scholar 

  27. H.R. Glyde, Rev. Mod. Phys. 39, 373–382 (1967)

    Article  CAS  Google Scholar 

  28. A.V. Nazarov, A.A. Mikheev, J. Phys. Condens. Matter 20, 485203.1 (2008)

    Article  Google Scholar 

  29. A.V. Nazarov, A.A. Mikheev, Defect Diffus. Forum 363, 112–119 (2015)

    Article  Google Scholar 

  30. I.V. Valikova, A.V. Nazarov, Solid State Phenom. 172–174, 1222–1227 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Competitiveness Growth Program of the Federal Autonomous Educational Institution of Higher Education National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nazarov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boboqambarova, M.A., Nazarov, A.V. Simulation features of atom jumps at constant temperature and under different pressure by the Molecular Dynamics. MRS Advances 7, 689–694 (2022). https://doi.org/10.1557/s43580-022-00307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00307-1

Navigation