Log in

Synergetic effects of Ni and graphene as promotors for TiO2 as photocatalysts for efficient hydrogen production

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The synergetic effects of nickel (Ni) and graphene (G) as promotors for TiO2 on photocatalytic hydrogen production have been observed. Ni/TiO2, G/TiO2, and Ni-G/TiO2 were synthesized via a wet impregnation method. While G-TiO2 gave a similar H2 yield to that of the unmodified TiO2, Ni/TiO2 tripled it for the same reaction time. Surprisingly, Ni-G/TiO2 exhibits a 10-fold H2 production as compared to the unmodified case. A mechanism is proposed in which Ni and graphene cooperate for the betterment of photocatalytic hydrogen production by facilitating concerted trap** and relay of electrons, thereby realizing effective charge-carrier separation and conduction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The data that support the findings of this study will be made available by the corresponding author upon reasonable request.

References

  1. S.M.A. Hossain, M.E. Ali, S.B. Abd Hamid, Synergizing TiO2 surface to enhance photocatalysis: a green technology for clean and safe environment—a review. Adv. Mater. Res. 1109, 300–303 (2015)

    Article  Google Scholar 

  2. M. Ibadurrohman, K. Hellgardt, Effects of PEG templating of spray-pyrolyzed TiO2 films on their nanoscale roughness and eventual photoelectrochemical properties. J. Appl. Electrochem. 52(6), 929–940 (2022)

    Article  CAS  Google Scholar 

  3. K. Gibran, M. Ibadurrahman, Effect of electrolyte type on the morphology and crystallinity of TiO2 nanotubes from Ti-6Al-4V anodization, in IOP Conference Series: Earth and Environmental Science (IOP Publishing, Bristol, 2018)

  4. Z. Wu et al., Photocatalytic H2 generation from aqueous ammonia solution using TiO2 nanowires-intercalated reduced graphene oxide composite membrane under low power UV light. Emergent Mater. 2(3), 303–311 (2019)

    Article  CAS  Google Scholar 

  5. Z. Noorimotlagh et al., The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: Effect of parameters and degradation mechanism. J. Hazard. Mater. 350, 108–120 (2018)

    Article  CAS  Google Scholar 

  6. J. Zhang et al., Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3(6), 715–726 (2010)

    Article  Google Scholar 

  7. B.-G. Park, Photocatalytic activity of TiO2-doped Fe, Ag, and Ni with N under visible light irradiation. Gels 8(1), 14 (2022)

    Article  CAS  Google Scholar 

  8. H.-H. Tseng et al., Degradation of xylene vapor over Ni-doped TiO2 photocatalysts prepared by polyol-mediated synthesis. Chem. Eng. J. 150(1), 160–167 (2009)

    Article  CAS  Google Scholar 

  9. A. Barmeh, M.R. Nilforoushan, S. Otroj, Wetting and photocatalytic properties of Ni-doped TiO2 coating on glazed ceramic tiles under visible light. Thin Solid Films 666, 137–142 (2018)

    Article  CAS  Google Scholar 

  10. D. **g, Y. Zhang, L. Guo, Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem. Phys. Lett. 415(1), 74–78 (2005)

    Article  CAS  Google Scholar 

  11. P. Junlabhut et al., Effect of metal (Mn Co, Zn, Ni) do** on structural, optical and photocatalytic properties of TiO2 nanoparticles prepared by sonochemical method. J. Nanosci. Nanotechnol. 18(10), 7302–7309 (2018)

    Article  CAS  Google Scholar 

  12. F.A. Unal et al., Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells. J. Mol. Liq. 299, 112177 (2020)

    Article  CAS  Google Scholar 

  13. A. Wang, H. **g, Tunable catalytic activities and selectivities of metal ion doped TiO2 nanoparticles—oxidation of organic compounds. Dalton Trans. 43(3), 1011–1018 (2014)

    Article  CAS  Google Scholar 

  14. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  15. T.-T. Pham, C. Nguyen-Huy, E.W. Shin, Facile one-pot synthesis of nickel-incorporated titanium dioxide/graphene oxide composites: enhancement of photodegradation under visible-irradiation. Appl. Surf. Sci. 377, 301–310 (2016)

    Article  CAS  Google Scholar 

  16. A. Sharma, B.-K. Lee, Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol. J. Environ. Manage. 181, 563–573 (2016)

    Article  CAS  Google Scholar 

  17. N.T. Padmanabhan et al., Morphology engineered spatial charge separation in superhydrophilic TiO2/graphene hybrids for hydrogen production. Mater. Today Energy 17, 100447 (2020)

    Article  Google Scholar 

  18. C. Gomez-Solis et al., Efficient solar removal of acetaminophen contaminant from water using flexible graphene composites functionalized with Ni@TiO2: W nanoparticles. J. Environ. Manage. 290, 112665 (2021)

    Article  CAS  Google Scholar 

  19. W. Zhang et al., Synergetic effect of metal nickel and graphene as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Sci. Rep. 5(1), 10589 (2015)

    Article  CAS  Google Scholar 

  20. S. Slamet et al., Enhanced photocatalytic activity of Pt deposited on titania nanotube arrays for the hydrogen production with glycerol as a sacrificial agent. Int. J. Hydrog. Energy 42(38), 24014–24025 (2017)

    Article  CAS  Google Scholar 

  21. R. Liu et al., Photocatalytic hydrogen production from glycerol and water with NiOx/TiO2 catalysts. Appl. Catal. B 144, 41–45 (2014)

    Article  CAS  Google Scholar 

  22. M. Ibadurrohman, K. Hellgardt, Importance of surface roughness of TiO2 photoanodes in promoting photoelectrochemical activities with and without sacrificial agent. Thin Solid Films 705, 138009 (2020)

    Article  CAS  Google Scholar 

  23. N.R. Khalid et al., Enhanced photocatalytic activity of graphene–TiO2 composite under visible light irradiation. Curr. Appl. Phys. 13(4), 659–663 (2013)

    Article  Google Scholar 

  24. R. Rahimi, et al., Photoelectrochemical investigation of TiO2–graphene nanocomposites, in Proceedings of the 18th International Electronic Conference on Synthetic Organic Chemistry (MDPI, Basel, 2014)

  25. Y.F. Zhao et al., Effects of oxygen vacancy on 3d transition-metal doped anatase TiO2: first principles calculations. Chem. Phys. Lett. 647, 36–41 (2016)

    Article  CAS  Google Scholar 

  26. M. Khenfouch et al., Morphological, vibrational and thermal properties of confined graphene nanosheets in an individual polymeric nanochannel by electrospinning. Graphene 1(2), 6 (2012)

    Article  Google Scholar 

  27. T. Sakthivel et al., Effect of Ni dopant in TiO2 matrix on its interfacial charge transportation and efficiency of DSSCs. J. Mater. Sci. Mater. Electron. 29(3), 2228–2235 (2018)

    Article  CAS  Google Scholar 

  28. L. Chougala et al., A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. J. Nano Electron. Phys. (2017). https://doi.org/10.21272/jnep.9(4).04005

    Article  Google Scholar 

  29. A.M. Azharudeen et al., Fabrication, characterization of polyaniline intercalated NiO nanocomposites and application in the development of non-enzymatic glucose biosensor. Arab. J. Chem. 13(2), 4053–4064 (2020)

    Article  CAS  Google Scholar 

  30. A. Meng et al., Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 31(30), 1807660 (2019)

    Article  Google Scholar 

  31. D.R. Lide, W.M. Haynes, CRC Handbook of Chemistry and Physics, vol. 9 (CRC Press, Boca Raton, 2010)

    Google Scholar 

  32. E. Rut’kov, E. Afanas’eva, N. Gall, Graphene and graphite work function depending on layer number on Re. Diamond Relat. Mater. 101, 107576 (2020)

    Article  Google Scholar 

  33. J.O.M. Bockris, Recent developments in the study of hydrogen overpotential. Chem. Rev. 43(3), 525–577 (1948)

    Article  CAS  Google Scholar 

  34. B. Weng, Y.-J. Xu, What if the electrical conductivity of graphene is significantly deteriorated for the graphene–semiconductor composite-based photocatalysis? ACS Appl. Mater. Interfaces 7(50), 27948–27958 (2015)

    Article  CAS  Google Scholar 

  35. S.M. Song et al., Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 12(8), 3887–3892 (2012)

    Article  CAS  Google Scholar 

  36. M. Cao et al., Ultrahigh electrical conductivity of graphene embedded in metals. Adv. Funct. Mater. 29(17), 1806792 (2019)

    Article  Google Scholar 

  37. T. Di et al., CdS nanosheets decorated with Ni@ graphene core-shell cocatalyst for superior photocatalytic H2 production. J. Mater. Sci. Technol. 56, 170–178 (2020)

    Article  Google Scholar 

  38. B. Bakbolat et al., Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: a review. Nanomaterials 10(9), 1790 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by The Directorate of Research and Development Universitas Indonesia (Risbang UI) through International Indexed Publication Grant (PUTI Q2 2022) with contract No: NKB-700/UN2.RST/HKP.05.00/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ibadurrohman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibadurrohman, M., Rahmatallah, Azzahra, J. et al. Synergetic effects of Ni and graphene as promotors for TiO2 as photocatalysts for efficient hydrogen production. MRS Communications 12, 1263–1270 (2022). https://doi.org/10.1557/s43579-022-00305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00305-2

Keywords

Navigation