Log in

Photocatalytic hydrogen production reactor system

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In the present study, an attempt is to manufacture eco-friendly, cost effective, and user-friendly hydrogen production setup. When this setup is tested using Zinc Indium Sulfide (ZIS) nanostructures using sacrificial reagent, reports 3013.2 µmol/h/g hydrogen under UV lamp irradiation which is almost four folds more than the ZIS catalyst. During the photocatalytic reaction benzyl alcohol scavenge the photo-generated holes (·OH) and avoid the charge recombination. It is found only that H+ ions getting in contact with the photo-generated electrons reflects the enhancement of photocatalytic hydrogen generation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Li, B. Lin, Impacts of urbanization and industrialization on energy consumption/CO2 emissions: does the level of development matter? Renew. Sustain. Energy Rev. 52, 107 (2015). https://doi.org/10.1016/j.rser.2015.07.185

    Article  CAS  Google Scholar 

  2. Z. Nasrollahi, M. Hashemi, S. Bameri, Environmental pollution, economic growth, population, industrialization, and technology in weak and strong sustainability: using STIRPAT model. Environ. Dev. Sustain. 22, 1105 (2020). https://doi.org/10.1007/s10668-018-0237-5

    Article  Google Scholar 

  3. Y. Wei, J. Wu, J. Huang, X. Liu, D. Han, L. An, H. Yu, J. Huang, Declining oxygen level as an emerging concern to global cities. Environ. Sci. Technol. 55, 7808 (2021)

    Article  CAS  Google Scholar 

  4. B.B. Kale, J.O. Baeg, S.M. Lee, H. Chang, S.J. Moon, C.W. Lee, CdIn2S4 nanotubes and “marigold” nanostructures: a visible-light photocatalyst. Adv. Fun. Mater. 16, 1349 (2006). https://doi.org/10.1002/adfm.200500525

    Article  CAS  Google Scholar 

  5. Q. Li, J. Cherian, M. Shabbir, M. Sial, J. Li, I. Mester, A. Badulescu, Exploring the relationship between renewable energy sources and economic growth. Case SAARC Count. Energ. 14, 520 (2021). https://doi.org/10.3390/en14030520

    Article  Google Scholar 

  6. Erdiwansyah, Mahidin, H. Husin, Nasaruddin, M. Zaki, Muhibbuddin, A critical review of the integration of renewable energy sources with various technologies. Prot. Control Mod. Power Syst. (2021). https://doi.org/10.1186/s41601-021-00181-3

  7. P.A. Maggard, Capturing metastable oxide semiconductors for applications in solar energy conversion. Acc. Chem. Res. 54, 3160 (2021). https://doi.org/10.1021/acs.accounts.1c00210

    Article  CAS  Google Scholar 

  8. A. Agrawal, S. Siddiqui, A. Soni, K. Khandelwal, G.D. Sharma, Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques. Sol. Energy 226, 9 (2021). https://doi.org/10.1016/j.solener.2021.08.001

    Article  CAS  Google Scholar 

  9. Y. Dong, Q. Han, Q. Hu, C. Xu, C. Dong, Y. Peng, Y. Ding, Y. Lan, Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. Appl. Catal. B 293, 120214 (2021)

    Article  CAS  Google Scholar 

  10. W. **ong, F. Huang, R. Zhang, Recent developments in carbon nitride based films for photoelectrochemical water splitting. Sustainable Energy Fuels 4, 485 (2020). https://doi.org/10.1039/C9SE00785G

    Article  CAS  Google Scholar 

  11. Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509 (2018). https://doi.org/10.1016/j.joule.2017.12.009

    Article  CAS  Google Scholar 

  12. H. Lyu, T. Hisatomi, Y. Goto, M. Yoshida, T. Higashi, M. Katayama, T. Takata, T. Minegishi, H. Nishiyama, T. Yamada, Y. Sakata, K. Asakura, K. Domen, An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196 (2021). https://doi.org/10.1039/C8SC05757E

    Article  Google Scholar 

  13. H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature 598, 304 (2021). https://doi.org/10.1038/s41586-021-03907-3

    Article  CAS  Google Scholar 

  14. B.A. Pinaud, J.D. Benck, L.C. Seitz, A.J. Forman, Z. Chen, T.G. Deutsch, B.D. James, K.N. Baum, G.N. Baum, S. Ardo, H. Wang, E. Miller, T.F. Jaramillo, Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983 (2013). https://doi.org/10.1039/C3EE40831K

    Article  CAS  Google Scholar 

  15. M. Schröder, K. Kailasam, J. Borgmeyer, M. Neumann, A. Thomas, R. Schomäcker, M. Schwarze, Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energ. Technol. 3, 1014 (2015). https://doi.org/10.1002/ente.201500142

    Article  CAS  Google Scholar 

  16. T. Ohno, L. Bai, T. Hisatomi, K. Maeda, K. Domen, Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J. Am. Chem. Soc. 134, 8254 (2012). https://doi.org/10.1021/ja302479f

    Article  CAS  Google Scholar 

  17. Y. Pan, X. Yuan, L. Jiang, H. Yu, J. Zhang, H. Wang, R. Guan, G. Zeng, Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chem. Eng. J. 354, 407 (2018). https://doi.org/10.1016/j.cej.2018.08.028

    Article  CAS  Google Scholar 

  18. S. Shen, J. Chen, X. Wang, L. Zhao, L. Guo, Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light. J. Power. Sources 196, 10112 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.103

    Article  CAS  Google Scholar 

  19. G. Chen, N. Ding, F. Li, Y. Fan, Y. Luo, D. Li, Q. Meng, Enhancement of photocatalytic H2 evolution on ZnIn2S4 loaded with in-situ photo-deposited MoS2 under visible light irradiation. Appl. Catal. B Environ. 160, 614 (2014). https://doi.org/10.1016/j.apcatb.2014.05.028

    Article  CAS  Google Scholar 

  20. S. Wan, M. Ou, Q. Zhong, S. Zhang, F. Song, Construction of Z-scheme photocatalytic systems using ZnIn2S4, CoOx-loaded Bi2MoO6 graphene oxide electron mediator and its efficient nonsacrificial water splitting under visible light. Chem. Eng. J. 325, 690 (2017). https://doi.org/10.1016/j.cej.2017.05.047

    Article  CAS  Google Scholar 

  21. X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen, Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S, Se) nano-/microstructures via facile solution route. J. Am. Chem. Soc. 128, 7222 (2006). https://doi.org/10.1021/ja0580845

    Article  CAS  Google Scholar 

  22. W. Yang, B. Liu, T. Fang, W. Jennifer, L. Christophe, Z. Li, X. Zhang, X. Jiang, Layered crystalline ZnIn2S4 nanosheets: CVD synthesis and photo-electrochemical properties. Nanoscale 8, 18197 (2016). https://doi.org/10.1039/C6NR06969J

    Article  CAS  Google Scholar 

  23. L. Shang, C. Zhou, T. Bian, H. Yu, L. Wu, C. Tung, T. Zhang, Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. J. Mater. Chem. A. 1, 4552–4558 (2013). https://doi.org/10.1039/C3TA01685D

    Article  CAS  Google Scholar 

  24. G. Zuo, Y. Wang, W. Teo, Q. **an, Y. Zhao, Direct Z-scheme TiO2–ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl. Catal. B 291, 120126 (2021). https://doi.org/10.1016/j.apcatb.2021.120126

    Article  CAS  Google Scholar 

  25. S. Kumar Lakhera, A. Rajan, T.P. Rugma, N. Bernaurdshaw, A review on particulate photocatalytic hydrogen production system: progress made in achieving high energy conversion efficiency and key challenges ahead. Renew. Sustain. Energy Rev. 152, 111694 (2021). https://doi.org/10.1016/j.rser.2021.111694

    Article  CAS  Google Scholar 

  26. A. Qureshy, I. Dincer, A new photoelectrochemical reactor designed for solar hydrogen fuel production: experimental study. Chem. Eng. Sci. 250, 117404 (2022). https://doi.org/10.1016/j.ces.2021.117404

    Article  CAS  Google Scholar 

  27. C. Acar, Y. Bicer, M. Demir, I. Dincer, Transition to a new era with light-based hydrogen production for a carbon-free society: an overview. Int. J. Hydrogen Energy 44, 25347 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.010

    Article  CAS  Google Scholar 

  28. X. **ong, A. Yan, X. Zhang, F. Huang, Z. Li, Z. Zhang, H. Weng, ReS2/ZnIn2S4 heterojunctions with enhanced visible-light-driven hydrogen evolution performance for water splitting. J. Alloy. Compd. 873, 159850 (2021). https://doi.org/10.1016/j.jallcom.2021.159850

    Article  CAS  Google Scholar 

  29. K. Nevase, S. Arbuj, V. Pandit, J. Ambekar, S. Rane, Synthesis, characterization and photocatalytic activity of tungsten oxide nanostructures. J. Nanoeng. Nanomanuf. 5, 221 (2015). https://doi.org/10.1166/jnan.2015.1249

    Article  CAS  Google Scholar 

  30. V. Pandit, Hydrogen as a clean energy source. Intech Open (2021). https://doi.org/10.5772/intechopen.101536

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Vikram Rama Uttam Pandit is thankful to the SPPU-IQAC for ASPIRE-18TEC001239 grant and Principal of H. V. Desai College for continuous support. VUP is also grateful to Chairman Shri., Kiritbhai Shah and Secretary Shri., and Hemanbhai Maniar PGK Mandal Pune for providing lab facilities. An expertise witnessed through the efforts taken by professional graphics designer named Miss. Tanmayee Anita Sanjay Bhailume explores the topic and concept keenly and self-exposure in table of content figure. A sincere thank you to Prof. Mahaveer Sankla, (English department-HVD) for his diligent proofreading of present paper.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Uttam Pandit.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 849 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, V.U., Arbuj, S.S., Pandit, S.S. et al. Photocatalytic hydrogen production reactor system. MRS Communications 12, 1190–1196 (2022). https://doi.org/10.1557/s43579-022-00292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00292-4

Keywords

Navigation