Log in

Magneto-luminescent nanocrystalline hydroxyapatite (Gd, Ho: HAp @Cu-NC) for prospective T1-T2 magnetic resonance imaging and fluorescence bioimaging

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, we report luminomagnetic nanocrystalline hydroxyapatite doped with paramagnetic labels and surface modified with luminescent copper nanoclusters. The dopant concentration is obtained through ICP-MS analysis as 4.99% of Gd3+ and 0.61% of Ho3+. Upon excitation at 310 nm, nanocrystals exhibit luminescence with emission maxima at 402 nm. The paramagnetic nanocrystals show saturation magnetization of 19.063 emu g−1. The nanocrystals have potential in develo** T1 and T2 bimodal MRI contrast agents due to remarkable longitudinal as well as transverse relaxivities, values of which are 12.25 s−1 mM−1 and 24.76 s−1 mM−1 respectively. The MTT assay and morphological examination on HeLa cells revealed non-toxicity of nanocrystals up to 250 µg/mL for 24 h incubation. It is investigated that nanocrystals are readily taken up by L929 mouse lung fibroblast cells. Said nanocrystals are potentially persuasive nanoprobes for bimodal MRI and fluorescence bioimaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. A. Biedrzycka, E. Skwarek, U.M. Hanna, Hydroxyapatite with magnetic core: synthesis methods, properties, adsorption and medical applications. Adv. Colloid Interface Sci. 291, 102401–102421 (2021). https://doi.org/10.1016/j.cis.2021.102401

    Article  CAS  Google Scholar 

  2. M. Du, J. Chen, K. Liu, H. **ng, C. Song, Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos. B 215, 10790–10812 (2021). https://doi.org/10.1016/j.compositesb.2021.108790

    Article  CAS  Google Scholar 

  3. Y. Ryabenkova, N. Jadav, M. Conte, M.F. Hippler, N. Reeves-McLaren, P.D. Coates, P. Twigg, A. Paradkar, Mechanism of hydrogen-bonded complex formation between ibuprofen and nanocrystalline hydroxyapatite. Langmuir 33, 2965–2976 (2017). https://doi.org/10.1021/acs.langmuir.6b04510

    Article  CAS  Google Scholar 

  4. S. Panda, C.K. Biswas, S. Paul, A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic do** methods for bone tissue engineering. Ceram. Int. 47, 28122–28144 (2021). https://doi.org/10.1016/j.ceramint.2021.07.100

    Article  CAS  Google Scholar 

  5. W. Ll, H. Xr, F. Ln, Z. Ym, L. Xx, T. Cy, Drug delivery properties of three-dimensional ordered macroporous zinc-doped hydroxyapatite. J. Mater. Res. 37, 2314–2321 (2022). https://doi.org/10.1557/s43578-022-00632-z

    Article  CAS  Google Scholar 

  6. X. Li, D. Zeng, L. Chen, P. Ke, Y. Tian, G. Wang, Preparation and characterization of magnetic chitosan hydroxyapatite nanoparticles for protein drug delivery and antibacterial activity. J. Mater. Res. 36, 4307–4316 (2021). https://doi.org/10.1557/s43578-021-00424-x

    Article  CAS  Google Scholar 

  7. D. Kamnoore, D. Mukherjee, D.N. Ammunje, P. Parasuraman, B.V. Teja, M. Radhika, Hydroxyapatite nanoparticle-enriched thiolated polymer-based biocompatible scaffold can improve skin tissue regeneration. J. Mater. Res. 36, 4287–4306 (2021). https://doi.org/10.1557/s43578-021-00405-0

    Article  CAS  Google Scholar 

  8. S.S. Syamchand, G. Sony, Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim. Acta 182, 1567–1589 (2015). https://doi.org/10.1007/s00604-015-1504-x

    Article  CAS  Google Scholar 

  9. B. Yilmaz, A.Z. Alshemary, Z. Evis, Co-doped hydroxyapatites as potential materials for biomedical applications. Microchem. J. 144, 443–453 (2019). https://doi.org/10.1016/j.microc.2018.10.007

    Article  CAS  Google Scholar 

  10. R. Zhou, Y. Li, D. **ao, T. Li, F.W. ZhangT, Y. Lin, Hyaluronan-directed fabrication of co-doped hydroxyapatite as a dual-modal probe for tumor-specific bioimaging. J. Mater. Chem. B 8, 2107–2114 (2020). https://doi.org/10.1039/C9TB02787D

    Article  CAS  Google Scholar 

  11. N.L. Ignjatović, L. Mančić, M. Vuković et al., Rare-earth (Gd3+, Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Sci. Rep. 9, 16305–16319 (2019). https://doi.org/10.1038/s41598-019-52885-0

    Article  CAS  Google Scholar 

  12. M. Liu, H. Liu, Li.X. SunS, H.Z. ZhouY, J. Lin, Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+, Er3+ composite fibers for drug delivery and dual modal imaging. Langmuir 30, 1176–1182 (2014). https://doi.org/10.1021/la500131d

    Article  CAS  Google Scholar 

  13. A. Tesch, C. Wenisch, K.-H. Herrmann, J.R. Reichenbach, P. Warncke, D. Fischer, F.A. Müller, Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging. Mater. Sci. Eng. C 81, 422–431 (2017). https://doi.org/10.1016/j.msec.2017.08.032

    Article  CAS  Google Scholar 

  14. Y. He, C. Lv, Wu.L. HouX, Mono-dispersed nano-hydroxyapatite based MRI probe with tetrahedral DNA nanostructures modification for in vitro tumor cell imaging. Anal. Chim. Acta 1138, 141–149 (2020). https://doi.org/10.1016/j.aca.2020.09.006

    Article  CAS  Google Scholar 

  15. E. Peng, F. Wang, J.M. Xue, Nanostructured magnetic nanocomposites as MRI contrast agents. J. Mater. Chem. B 3, 2241–2276 (2015). https://doi.org/10.1039/C4TB02023E

    Article  CAS  Google Scholar 

  16. M. Norek, J.A. Peters, MRI contrast agents based on dysprosium or holmium. Prog. Nucl. Magn. Reson. Spectrosc. 59, 64–82 (2011). https://doi.org/10.1016/j.pnmrs.2010.08.002

    Article  CAS  Google Scholar 

  17. Z. Zhou, R. Bai, J. Munasinghe, Z. Shen, L. Nie, X. Chen, T1–T2 dual-modal magnetic resonance imaging: from molecular basis to contrast agents. ACS Nano 11, 5227–5232 (2017). https://doi.org/10.1021/acsnano.7b03075

    Article  CAS  Google Scholar 

  18. L. Frullano, T.J. Meade, Multimodal MRI contrast agents. J. Biol. Inorg. Chem. 12, 939–949 (2007). https://doi.org/10.1007/s00775-007-0265-3

    Article  CAS  Google Scholar 

  19. Y.K. Peng, C.N. Lui, Y.W. Chen, S.W. Chou, E. Raine, P.T. Chou, K.K. Yung, S.E. Tsang, Engineering of single magnetic particle carrier for living brain cell imaging: a tunable T1-/T2-/dual-modal contrast agent for magnetic resonance imaging application. Chem. Mater. 29, 4411–4417 (2017). https://doi.org/10.1021/acs.chemmater.7b00884

    Article  CAS  Google Scholar 

  20. A. Szpak, S. Fiejdasz, W. Prendota et al., T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J. Nanopart. Res. 16, 2678–2688 (2014). https://doi.org/10.1007/s11051-014-2678-6

    Article  CAS  Google Scholar 

  21. M. Yang, L. Gao, K. Liu, C. Luo, Y. Wang, L. Yu, H. Peng, W. Zhang, Characterization of Fe3O4/SiO2/Gd2O(CO3)2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta 131, 661–665 (2015). https://doi.org/10.1016/j.talanta.2014.08.042

    Article  CAS  Google Scholar 

  22. X. Wang, Z. Zhou, Z. Wang, Y. Xue, Y. Zeng, J. Gao, L. Zhu, L.G. ZhangX, X. Chen, Gadolinium embedded iron oxide nanoclusters as T1–T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery. Nanoscale 5, 8098–8104 (2013). https://doi.org/10.1039/C3NR02797J

    Article  CAS  Google Scholar 

  23. O.S. Wolfbeis, An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768 (2015). https://doi.org/10.1039/c4cs00392f

    Article  CAS  Google Scholar 

  24. H.-S. Peng, D.T. Chiu, Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev. 44, 4699–4722 (2015). https://doi.org/10.1039/C4CS00294F

    Article  CAS  Google Scholar 

  25. ChenF. LiuH, P. **, B. Chen, L. Huang, J. Cheng, W.J. ShaoC, D. Bai, Z. Zeng, Biocompatible fluorescent hydroxyapatite: synthesis and live cell imaging applications. J. Phys. Chem. C 115, 18538–18544 (2011). https://doi.org/10.1021/jp206843w

    Article  CAS  Google Scholar 

  26. H. Liu, L. Liao, X. Pan, K. Su, P. Shuai, Z. Yan, Q. Guo, L. Mei, Recent research progress of luminescent materials with apatite structure: a review. Open Ceram. 10, 100251–100266 (2022). https://doi.org/10.1016/j.oceram.2022.100251

    Article  Google Scholar 

  27. Z. Wang, B. Chen, A.L. Rogach, Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horiz. 2, 135–146 (2017). https://doi.org/10.1039/C7NH00013H

    Article  CAS  Google Scholar 

  28. Z. Zhao, Y. Li, Develo** fluorescent copper nanoclusters: synthesis, properties, and applications. Colloids Surf. B195, 111244–111253 (2020). https://doi.org/10.1016/j.colsurfb.2020.111244

    Article  CAS  Google Scholar 

  29. L. Zhang, E. Wang, Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9, 132–157 (2014). https://doi.org/10.1016/j.nantod.2014.02.010

    Article  CAS  Google Scholar 

  30. T.-Q. Yang, B. Peng, B.-Q. Shan et al., Origin of the photoluminescence of metal nanoclusters: from metal-centered emission to ligand-centered emission. Nanomaterials 10, 261 (2020). https://doi.org/10.3390/nano10020261

    Article  CAS  Google Scholar 

  31. A. Baghdasaryan, T. Bürgi, Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. Nanoscale 13, 6283–6340 (2021). https://doi.org/10.1039/D0NR08489A

    Article  CAS  Google Scholar 

  32. Y. An, Y. Ren, M. Bick, A. Dudek, E.H.-W. Waworuntu, J. Tang, J. Chen, B. Chang, Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens. Bioelectron 154, 112078–112091 (2020). https://doi.org/10.1016/j.bios.2020.112078

    Article  CAS  Google Scholar 

  33. M. Ramadurai, G. Rajendran, T.S. Bama, P. Prabhu, K. Kathiravan, Biocompatible thiolate protected copper nanoclusters for an efficient imaging of lung cancer cells. J. Photochem. Photobiol. B: Biol. 205, 111845–111852 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111845

    Article  CAS  Google Scholar 

  34. R. Rajamanikandan, A. Aazaad, S. Lakshmipathi, M. Ilanchelian, Glutathione functionalized copper nanoclusters as a fluorescence platform for specific biosensing of cysteine and application in cellular imaging. Microchem. J. 158, 105253–110260 (2020). https://doi.org/10.1016/j.microc.2020.105253

    Article  CAS  Google Scholar 

  35. D.-E. Lee, H. Koo, I.-C. Sun, J.H. Ryu, K. Kima, I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012). https://doi.org/10.1039/C2CS15261D

    Article  CAS  Google Scholar 

  36. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9, 7591–7621 (2013). https://doi.org/10.1016/j.actbio.2013.04.012

    Article  CAS  Google Scholar 

  37. A. Ashokan, D. Menon, S. Nair, M. Koyakutty, A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials 31, 2606–2616 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.113

    Article  CAS  Google Scholar 

  38. L. **, L. Junkang, Fast synthesis of copper nanoclusters through the use of hydrogen peroxide additive and their application for the fluorescence detection of Hg2+ in water samples. New J. Chem. 39, 5240–5248 (2015). https://doi.org/10.1039/C5NJ00831J

    Article  CAS  Google Scholar 

  39. E. Mavropoulos, A.M. Costa, L.T. Costa, C.A. Achete, A. Mello, J.M. Granjeiro, A.M. Rossi, Adsorption and bioactivity studies of albumin onto hydroxyapatite surface. Colloids Surf. B 83, 1–9 (2011). https://doi.org/10.1016/j.colsurfb.2010.10.025

    Article  CAS  Google Scholar 

  40. D.T.H. Wassell, R.C. Hall, G. Embery, Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials 16, 697–702 (1995). https://doi.org/10.1016/0142-9612(95)99697-K

    Article  CAS  Google Scholar 

  41. S.K. Swain, D. Sarkar, Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl. Surf. Sci. 286, 99–103 (2013). https://doi.org/10.1016/j.apsusc.2013.09.027

    Article  CAS  Google Scholar 

  42. N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015). https://doi.org/10.1021/acs.chemrev.5b00112

    Article  CAS  Google Scholar 

  43. L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012). https://doi.org/10.1021/cr300068p

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The director of the CSIR-NIIST in Thiruvananthapuram, the head of SAIF at IIT Madras, the director of IISER in Thiruvananthapuram, the director of SAIF-STIC-CUSAT in Kochi, the director of CLIF at the University of Kerala, the head of the chemistry department at the University of Kerala (Kariavattom Campus), and the head of the chemistry department at University College in Thiruvananthapuram are all thanked by the authors for providing advanced characterization techniques and laboratory facilities for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasidharanpillai S. Syamchand.

Ethics declarations

Conflict of interest

There are no conflicting interests declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 177 KB).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, J.S., Surendran, D. & Syamchand, S.S. Magneto-luminescent nanocrystalline hydroxyapatite (Gd, Ho: HAp @Cu-NC) for prospective T1-T2 magnetic resonance imaging and fluorescence bioimaging. Journal of Materials Research 38, 1963–1972 (2023). https://doi.org/10.1557/s43578-023-00933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00933-x

Keywords

Navigation