Log in

Atomistic analysis of plastic deformation and shear band formation in FCC/FCC metallic nanolayered composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomistic simulations were used to explore the plastic deformation and shear band (SB) formation in Cu/Au, Cu/Ag, Cu/Al and Cu/Ni metallic nanolayered composites (MNCs). The analysis reveals that interface dislocation structures in all four MNCs are composed of three sets of edge Shockley partial dislocations. Under external loading, dislocations firstly nucleated from the phase with lower stacking fault energy (SFE) in FCC/FCC MNCs. The SBs formed in Cu/Au and Cu/Ag MNCs and the onset strain of SB increases with the increasing layer thicknesses. While in Cu/Al and Cu/Ni MNCs, the deformation is relatively uniform and each slip plane contains similar amounts of dislocations. The formation of SBs in Cu/Au and Cu/Ag MNCs is induced by the nucleation and growth of deformation twinning in the phase with low SFE. After the formation of SBs, the interface sliding accommodates most plastic strains during the deformation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data sets generated during the current study are available from the corresponding author on a reasonable request.

Code availability

The codes are available from the corresponding author on a reasonable request.

References

  1. R.H. Hannink, A.J. Hill, Nanostructure Control of Materials (Woodhead Publishing, Cambridge, 2006)

    Book  Google Scholar 

  2. Y. Ding, Z. Farhat, D. Northwood, A. Alpas, Mechanical properties and tribological behaviour of nanolayered Al/Al2O3 and Ti/TiN composites. Surf. Coat. Technol. 68, 459 (1994)

    Article  Google Scholar 

  3. I. Beyerlein, A. Caro, M. Demkowicz, N. Mara, A. Misra, B. Uberuaga, Radiation damage tolerant nanomaterials. Mater. Today 16(11), 443 (2013)

    Article  CAS  Google Scholar 

  4. A. Misra, J. Hirth, R. Hoagland, Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 4817 (2005)

    Article  CAS  Google Scholar 

  5. X. Chen, X. Kong, A. Misra, D. Legut, B. Yao, T.C. Germann, R. Zhang, Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces. Acta Mater. 143, 107 (2018)

    Article  CAS  Google Scholar 

  6. M. Monclús, M. Callisti, T. Polcar, L. Yang, J. Molina-Aldareguía, J. Llorca, Effect of layer thickness on the mechanical behaviour of oxidation-strengthened Zr/Nb nanoscale multilayers. J. Mater. Sci. 53(8), 5860 (2018)

    Article  Google Scholar 

  7. S. Dong, T. Chen, S. Huang, N. Li, C. Zhou, Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites. Scr. Mater. 187, 323 (2020)

    Article  CAS  Google Scholar 

  8. D. Bhattacharyya, N. Mara, P. Dickerson, R. Hoagland, A. Misra, Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. J. Mater. Res. 24(3), 1291 (2009)

    Article  CAS  Google Scholar 

  9. Y. Li, X. Zhu, G. Zhang, J. Tan, W. Wang, B. Wu, Investigation of deformation instability of Au/Cu multilayers by indentation. Philos. Mag. 90(22), 3049 (2010)

    Article  CAS  Google Scholar 

  10. F. Wang, P. Huang, M. Xu, T. Lu, K. Xu, Shear banding deformation in Cu/Ta nano-multilayers. Mater. Sci. Eng. A 528(24), 7290 (2011)

    Article  CAS  Google Scholar 

  11. G. Zhang, Y. Liu, W. Wang, J. Tan, Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88(1), 013105 (2006)

    Article  Google Scholar 

  12. J. Yan, X. Zhu, B. Yang, G. Zhang, Shear stress-driven refreshing capability of plastic deformation in nanolayered metals. Phys. Rev. Lett. 110(15), 155502 (2013)

    Article  CAS  Google Scholar 

  13. Y. Li, X. Zhu, J. Tan, B. Wu, G. Zhang, Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos. Mag. Lett. 89(1), 66 (2009)

    Article  CAS  Google Scholar 

  14. S. Zheng, J. Wang, J. Carpenter, W. Mook, P. Dickerson, N. Mara, I. Beyerlein, Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282 (2014)

    Article  CAS  Google Scholar 

  15. X. Zhu, X. Liu, R. Zong, F. Zeng, F. Pan, Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater. Sci. Eng. A 527(4–5), 1243 (2010)

    Article  Google Scholar 

  16. Y. Li, X. Zhu, J. Tan, B. Wu, W. Wang, G. Zhang, Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation. J. Mater. Res. 24(3), 728 (2009)

    Article  CAS  Google Scholar 

  17. S. Wen, R. Zong, F. Zeng, Y. Gao, F. Pan, Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers. J. Mater. Res. 22(12), 3423 (2007)

    Article  CAS  Google Scholar 

  18. X. An, Q. Lin, S. Wu, Z. Zhang, R. Figueiredo, N. Gao, T. Langdon, The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion. Scr. Mater. 64(10), 954 (2011)

    Article  CAS  Google Scholar 

  19. S. Shao, J. Wang, I.J. Beyerlein, A. Misra, Glide dislocation nucleation from dislocation nodes at semi-coherent {1 1 1} Cu–Ni interfaces. Acta Mater. 98, 206 (2015)

    Article  CAS  Google Scholar 

  20. A. Gola, L. Pastewka, K. Binder, M. Müller, A. Trautmann, Structure of interfaces in Cu|Au nanolaminates, in NIC Symposium (City, 2018), p. 247

  21. S. Shao, J. Wang, A. Misra, Energy minimization mechanisms of semi-coherent interfaces. J. Appl. Phys. 116(2), 023508 (2014)

    Article  Google Scholar 

  22. C. Wang, J. Wang, J. Hu, S. Huang, Y. Sun, Y. Zhu, Q. Shen, G. Luo, Shear localization and mechanical properties of Cu/Ta metallic nanolayered composites: a molecular dynamics study. Metals 12(3), 421 (2022)

    Article  Google Scholar 

  23. M. Damadam, S. Shao, I. Salehinia, G. Ayoub, H.M. Zbib, Molecular dynamics simulations of mechanical behavior in nanoscale ceramic–metallic multilayer composites. Mater. Res. Lett. 5(5), 306 (2017)

    Article  CAS  Google Scholar 

  24. X.-Y. Zhou, X.-S. Yang, J.-H. Zhu, F. **ng, Atomistic simulation study of the grain-size effect on hydrogen embrittlement of nanograined Fe. Int. J. Hydrogen Energy 45(4), 3294 (2020)

    Article  CAS  Google Scholar 

  25. J. Li, C. Kirchlechner, Does the stacking fault energy affect dislocation multiplication? Mater. Charact. 161, 110136 (2020)

    Article  CAS  Google Scholar 

  26. A. Rida, M. Micoulaut, E. Rouhaud, A. Makke, Understanding the strain rate sensitivity of nanocrystalline copper using molecular dynamics simulations. Comput. Mater. Sci. 172, 109294 (2020)

    Article  CAS  Google Scholar 

  27. Y. Zhu, X. Liao, S. Srinivasan, Y. Zhao, M. Baskes, F. Zhou, E. Lavernia, Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl. Phys. Lett. 85(21), 5049 (2004)

    Article  CAS  Google Scholar 

  28. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang, J. Hirth, Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58(6), 2262 (2010)

    Article  CAS  Google Scholar 

  29. Y. Zhu, X. Liao, X. Wu, Deformation twinning in bulk nanocrystalline metals: experimental observations. JOM 60(9), 60 (2008)

    Article  CAS  Google Scholar 

  30. N. Vo, R.S. Averback, P. Bellon, S. Odunuga, A. Caro, Quantitative description of plastic deformation in nanocrystalline Cu: dislocation glide versus grain boundary sliding. Phys. Rev. B 77(13), 134108 (2008)

    Article  Google Scholar 

  31. J.B. Jeon, B.-J. Lee, Y.W. Chang, Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scr. Mater. 64(6), 494 (2011)

    Article  CAS  Google Scholar 

  32. S. Huang, I.J. Beyerlein, C. Zhou, Nanograin size effects on the strength of biphase nanolayered composites. Sci. Rep. 7(1), 1 (2017)

    Google Scholar 

  33. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995)

    Article  CAS  Google Scholar 

  34. A. Gola, L. Pastewka, Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys. Model. Simul. Mater. Sci. Eng. 26(5), 055006 (2018)

    Article  Google Scholar 

  35. P. Williams, Y. Mishin, J. Hamilton, An embedded-atom potential for the Cu–Ag system. Model. Simul. Mater. Sci. Eng. 14(5), 817 (2006)

    Article  CAS  Google Scholar 

  36. F. Apostol, Y. Mishin, Interatomic potential for the Al–Cu system. Phys. Rev. B 83(5), 054116 (2011)

    Article  Google Scholar 

  37. B. Onat, S. Durukanoğlu, An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method. J. Phys.: Condens. Matter 26(3), 035404 (2013)

    Google Scholar 

  38. A. Gola, L. Pastewka, Scratching Cu|Au nanolaminates. Lubricants 7(5), 44 (2019)

    Article  Google Scholar 

  39. W.G. Nöhring, W. Curtin, Cross-slip of long dislocations in FCC solid solutions. Acta Mater. 158, 95 (2018)

    Article  Google Scholar 

  40. R. Li, H.B. Chew, Planar-to-wavy transition of Cu–Ag nanolayered metals: a precursor mechanism to twinning. Philos. Mag. 95(10), 1029 (2015)

    Article  CAS  Google Scholar 

  41. A. Yanilkin, V. Krasnikov, A.Y. Kuksin, A. Mayer, Dynamics and kinetics of dislocations in Al and Al–Cu alloy under dynamic loading. Int. J. Plast. 55, 94 (2014)

    Article  CAS  Google Scholar 

  42. G. Esteban-Manzanares, E. Martínez, J. Segurado, L. Capolungo, J. LLorca, An atomistic investigation of the interaction of dislocations with Guinier–Preston zones in Al–Cu alloys. Acta Mater. 162, 189 (2019)

    Article  CAS  Google Scholar 

  43. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  44. A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 18(8), 085001 (2010)

    Article  Google Scholar 

  45. J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91(19), 4950 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF CAREER Award (CMMI-2015598).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SD, X-YL, YC, CZ; Methodology: SD, CZ; Formal analysis and investigation: SD, CZ; Writing—original draft preparation: SD; Writing—review and editing: SD, CZ, X-YL, YC; Funding acquisition: CZ; Resources: CZ; Supervision: CZ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Caizhi Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Liu, XY., Chen, Y. et al. Atomistic analysis of plastic deformation and shear band formation in FCC/FCC metallic nanolayered composites. Journal of Materials Research 38, 1386–1395 (2023). https://doi.org/10.1557/s43578-023-00898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00898-x

Keywords

Navigation