Log in

Accelerated biomimetic nanosized apatite coatings deposition on alkali treated titanium

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Biomimetic deposition is a low-cost method to coat complex-shaped substrates at physiological temperatures that requires long times to achieve coatings with a suitable adhesion strength. Thus, the chemical, morphological and mechanical properties of hydroxyapatite (HA) coatings on titanium obtained by biomimetic deposition using supersaturated calcification solutions (SCS) were studied. This approach also eliminates heat treatment during substrate activation and prior to HA deposition. The results showed that it is possible to obtain nanosized HA coatings on modified titanium within 4 h and the chemical composition of the coatings was affected by the pH of the SCS. Nevertheless, the final composition after post-deposition annealing treatment showed no differences in composition and coating features. Interfacial shear strength and critical loads were significantly higher than those reported using the traditional biomimetic method. However, in vitro and in vivo studies should be performed to confirm the results before clinical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. A. Civantos, E. Martínez-Campos, V. Ramos, C. Elvira, A. Gallardo, A. Abarrategi, Titanium coatings and surface modifications: toward clinically useful bioactive implants. ACS Biomater. Sci. Eng. 3, 1245–1261 (2017). https://doi.org/10.1021/acsbiomaterials.6b00604

    Article  CAS  Google Scholar 

  2. S.B. Goodman, Z. Yao, M. Keeney, F. Yang, The future of biologic coatings for orthopaedic implants. Biomaterials 34, 1–10 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.074

    Article  CAS  Google Scholar 

  3. L. Morejón-Alonso, C. Mochales, L. Nascimento, W.D. Müller, Electrochemical deposition of Sr and Sr/Mg-co-substituted hydroxyapatite on Ti-40Nb alloy. Mater. Lett. 248, 65–68 (2019). https://doi.org/10.1016/j.matlet.2019.03.141

    Article  CAS  Google Scholar 

  4. B. Priyadarshini, M. Rama, U. Vijayalakshmi, Bioactive coating as a surface modification technique for biocompatible metallic implants: a review. J. Asian Ceram. Soc. 7(4), 397–406 (2019). https://doi.org/10.1080/21870764.2019.1669861

    Article  Google Scholar 

  5. O.V. Savvova, L.L. Bragina, G.N. Shadrina, Properties of bioactive glass ceramic coatings on titanium alloys obtained by slip technology. Glass Ceram. 72, 145–149 (2015). https://doi.org/10.1007/s10717-015-9744-0

    Article  CAS  Google Scholar 

  6. D.C. Draghici et al., Strontium-substituted bioactive Glass-Ceramic films for tissue engineering. Bol. Soc. Esp. Cerám. Vidr. (2020). https://doi.org/10.1016/j.bsecv.2020.09.006

    Article  Google Scholar 

  7. F. Baino, G. Novajra, V. Miguez-Pacheco, A.R. Boccaccini, C. Vitale-Brovarone, Bioactive glasses: special applications outside the skeletal system. J. Non Cryst. Solids 432, 15–30 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.02.015

    Article  CAS  Google Scholar 

  8. J.A. Oliver et al., Bioglass coatings on metallic implants for biomedical applications. Bioact. Mater. 4, 261–270 (2019). https://doi.org/10.1016/j.bioactmat.2019.09.002

    Article  Google Scholar 

  9. R. Teghil, M. Curcio, A. De Bonis, Substituted hydroxyapatite, glass, and glass-ceramic thin films deposited by nanosecond pulsed laser deposition (PLD) for biomedical applications: a systematic review. Coatings 11(7), 811 (2021). https://doi.org/10.3390/coatings11070811

    Article  CAS  Google Scholar 

  10. G. Feifei, G. **, L. **aogang, Research progress on titanium-containing organic-inorganic hybrid protective coatings. Surf. Rev. Lett. 26(9), 1930002 (2019). https://doi.org/10.1142/S0218625X19300028

    Article  CAS  Google Scholar 

  11. L.E. Valenti, L.V. Bonnet, M.R. Galiano, C.E. Giacomelli, A simple strategy to prepare hybrid coating on titanium (Ti6Al4V). Surf. Coat. Technol. 431, 128017 (2022). https://doi.org/10.1016/j.surfcoat.2021.128017

    Article  CAS  Google Scholar 

  12. K.R. de Groot, R. Geesink, C.P.A.T. Klein, P. Serekian, Plasma sprayed coatings of hydroxylapatite. J. Biomed. Mater. Res. 21, 1375–1381 (1987). https://doi.org/10.1002/jbm.820211203

    Article  Google Scholar 

  13. C.H. Mohammed, A review on different coating methods of hydroxyapatite on titanium implants. Int. J. Innov. Res. Sci. Eng. Tech. 6(4), 103–106 (2017)

    Google Scholar 

  14. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 24, 721–734 (1990). https://doi.org/10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  15. E. Palierse et al., Baicalein-modified hydroxyapatite nanoparticles and coatings with antibacterial and antioxidant properties. Mater. Sci. Eng. C 118, 111537 (2021). https://doi.org/10.1016/j.msec.2020.111537

    Article  CAS  Google Scholar 

  16. A.C. Tas, S.B. Bhaduri, Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J. Mater. Res. 19(9), 2742–2749 (2004). https://doi.org/10.1557/JMR.2004.0349

    Article  CAS  Google Scholar 

  17. H.M. Kim, T. Miyazaki, T. Kokubo, T. Nakamura, Revised simulated body fluid. Key Eng. Mater. 192–195, 47–50 (2001). https://doi.org/10.4028/www.scientific.net/KEM.192-195.47

    Article  Google Scholar 

  18. A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura, Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. A 65, 188–195 (2003). https://doi.org/10.1002/jbm.a.10482

    Article  CAS  Google Scholar 

  19. T. Kokubo, S. Yamaguchi, Chemical surface modification of a titanium scaffold, in Metallic Foam Bone. ed. by C. Wen (Elsevier, Cambridge, 2017), pp.161–179

    Chapter  Google Scholar 

  20. T. Kokubo, S. Yamaguchi, Simulated body fluid and the novel bioactive materials derived from it. J. Biomed. Mater. Res. A 107(5), 968–977 (2019). https://doi.org/10.1002/jbm.a.36620

    Article  CAS  Google Scholar 

  21. F. Li, Q.L. Feng, F.Z. Cui, H.D. Li, H. Schubert, A simple biomimetic method for calcium phosphate coating. Surf. Coat. Tech. 154, 88–93 (2002). https://doi.org/10.1016/S0257-8972(01)01710-8

    Article  CAS  Google Scholar 

  22. P. Habibovic, F. Barrère, C.A. van Blitterswijk, K. de Groot, P. Layrolle, Biomimetic hydroxyapatite coating on metal implants. J. Am. Ceram. Soc. 85(3), 517–522 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00126.x

    Article  CAS  Google Scholar 

  23. F. Barrére, C.A. van Blitterswijk, K. de Groot, P. Layrolle, Influence of ionic strength and carbonate on the Ca–P coating formation from SBFx5 solution. Biomaterials 23, 1921–1930 (2002). https://doi.org/10.1016/S0142-9612(01)00318-0

    Article  Google Scholar 

  24. A. Bigi et al., Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 26, 4085–4089 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.034

    Article  CAS  Google Scholar 

  25. S. Bharati, M.K. Sinha, D. Basu, Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. Bull. Mater. Sci. 28(6), 617–621 (2005). https://doi.org/10.1007/BF02706352

    Article  CAS  Google Scholar 

  26. L. Muller, F.A. Muller, Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater. 2, 181–189 (2006). https://doi.org/10.1016/j.actbio.2005.11.001

    Article  Google Scholar 

  27. L. Morejón-Alonso, M.A. Bussulo, R. Debone, E. González-Martínez, J.E. González, Apatite coatings on chemically modified titanium using a new accelerated biomimetic route. Mater. Lett. 280, 128576 (2020). https://doi.org/10.1016/j.matlet.2020.128576

    Article  CAS  Google Scholar 

  28. T. Kreller, F. Sahm, R. Bader, A.R. Boccaccini, A. Jonitz-Heincke, R. Detsch, Biomimetic calcium phosphate coatings for bioactivation of titanium implant surfaces: methodological approach and in vitro evaluation of biocompatibility. Materials. 14, 3516 (2021). https://doi.org/10.3390/ma14133516

    Article  CAS  Google Scholar 

  29. M.D. Francis, N.C. Webb, Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calc. Tiss. Res. 6, 335–342 (1971). https://doi.org/10.1007/bf02196214

    Article  CAS  Google Scholar 

  30. D. Pham Minh, M. Galera Martínez, A. Nzihou, P. Sharrock, Thermal behavior of apatitic calcium phosphates synthesized from calcium carbonate and orthophosphoric acid or potassium dihydrogen orthophosphate. J. Therm. Anal. Calorim. (2013). https://doi.org/10.1007/s10973-012-2695-6

    Article  Google Scholar 

  31. H.M. Kim, F. Miyaji, T. Kokubo, S. Nishiguri, T. Nakamura, Graded surface structure of bioactive titanium prepared by chemical treatment. J. Biomed. Mater. Res. 45(2), 100–107 (1999). https://doi.org/10.1002/(sici)1097-4636(199905)45:2%3C100::aid-jbm4%3E3.0.co;2-0

    Article  CAS  Google Scholar 

  32. S. Tanaka, M. Aonuma, N. Hirose, T. Tanaki, The preparation of porous TiO2 by immersing Ti in NaOH solution. J. Electrochem. Soc. 149(11), D167–D171 (2002). https://doi.org/10.1149/1.1512672

    Article  CAS  Google Scholar 

  33. H. Takadama, H.M. Kim, T. Kokubo, T. Nakamura, TEM-EDS study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 57, 441–448 (2001). https://doi.org/10.1002/1097-4636(20011205)57:3%3C441::aid-jbm1187%3E3.0.co;2-b

    Article  CAS  Google Scholar 

  34. S. Yamaguchi, P.T. Minh Le, M. Ito, S.A. Shintani, H. Takadama, Tri-functional calcium-deficient calcium titanate coating on titanium metal by chemical and heat treatment. Coatings 9(9), 561 (2019). https://doi.org/10.3390/coatings9090561

    Article  CAS  Google Scholar 

  35. J. Forsgren, F. Svahn, T. Jarmar, H. Engqvist, Structural change of biomimetic hydroxyapatite coatings due to heat treatment. J. Appl. Biomater. Biomech. 5(1), 23–27 (2007). https://doi.org/10.1177/2F228080000700500103

    Article  CAS  Google Scholar 

  36. D.K. Pattanayak, S. Yamaguchi, T. Matsushita, T. Nakamura, T. Kokubo, Apatite forming ability of titanium in terms of pH of the exposed solution. J. R. Soc. Interface 9, 2145–2155 (2012). https://doi.org/10.1098/2Frsif.2012.0107

    Article  CAS  Google Scholar 

  37. ASTM C1624-05: Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramics Coatings by Quantitative Single Point Scratch Testing, 2005.

  38. B. León, Pulsed laser deposition of thin calcium phosphate coatings, in Thin Calcium Phosphate Coatings for Medical Implants. ed. by B. León, J.A. Jansen (Springer, New York, 2009), pp.101–155

    Chapter  Google Scholar 

  39. ASTM F 1044-05: Standard Test Method for Shear Testing of Calcium Phosphate Coatings and Metallic Coatings, 2005.

  40. H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, Bonding strength of bonelike apatite layer to Ti metal substrate. J. Biomed. Mater. Res. Appl. Biomater. 38, 121–127 (1997). https://doi.org/10.1002/(SICI)1097-4636(199722)38:2%3C121::AID-JBM6%3E3.0.CO;2-S

    Article  CAS  Google Scholar 

  41. S.V. Dorozhkin, Calcium orthophosphate coatings, films and layers. Progress Biomater. 1(1), 1–40 (2012). https://doi.org/10.1186/2F2194-0517-1-1

    Article  Google Scholar 

  42. S. Tiwari, S.B. Mishra, Post annealing effect on corrosion behavior, bacterial adhesion, and bioactivity of LVOF sprayed hydroxyapatite coating. Surf. Coat. Technol. 405, 126500 (2021). https://doi.org/10.1016/j.surfcoat.2020.126500

    Article  CAS  Google Scholar 

  43. E. Zhang, Y. Wang, F. Gao, S. Wei, Y. Zheng, Enhanced bioactivity of sandblasted and acid-etched titanium surfaces. Adv. Mater. Res. 79–82, 393–396 (2009). https://doi.org/10.4028/www.scientific.net/AMR.79-82.393

    Article  CAS  Google Scholar 

  44. J.E. González, A. Paz, D. Fernández, Procedimiento para la obtención de un recubrimiento apatítico denso y producto resultante. CU 23613 A1, 2010.

  45. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  46. V. Galván, G. Castellano, S.R. Bertolino, Quantification by SEM–EDS in uncoated non-conducting samples. Radiat. Phys. Chem. 88, 32–37 (2013). https://doi.org/10.1016/j.radphyschem.2013.03.033

    Article  CAS  Google Scholar 

  47. Fumero et al., Diseño y fabricación de un equipo para medir adherencia por rayado. Ing. Mech. 21(3), 124–129 (2018)

    Google Scholar 

  48. B. Ollivier, A. Matthews, Adhesion of diamond-like carbon films on polymers: an assessment of the validity of the scratch test technique applied to flexible substrates. J. Adh. Sci. Tech. 8(6), 651–662 (1994). https://doi.org/10.1163/156856194X0040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To Alejandro Ortega-Rodés for the help provided in the composition and editing of images and figures. Also, to the Department of Metallurgy and Materials Engineering (MTM), KU Leuven, for the assistance in the cross sections characterization.

Funding

This work was supported by the National Program National of Science, Technology and Innovation (PN211LH008-044) of the Cuban Ministry of Science, Technology and Environment (CITMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loreley Morejón-Alonso.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest or competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morejón-Alonso, L., Bussulo, M.A., Pérez, A.F. et al. Accelerated biomimetic nanosized apatite coatings deposition on alkali treated titanium. Journal of Materials Research 37, 4200–4210 (2022). https://doi.org/10.1557/s43578-022-00786-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00786-w

Keywords

Navigation