Log in

Heat transfer between a hot AFM tip and a cold sample: impact of the air pressure

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We observe the heat flux exchanged by the hot tip of a scanning thermal microscope, which is an instrument based on the atomic force microscope. We first vary the pressure in order to analyze the impact on the hot tip temperature. Then the distance between the tip and a cold sample is varied down to few nanometers, in order to reach the ballistic regime. We observe the cooling of the tip due to the tip-sample heat flux and compare it to the current models in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Williams and H.K. Wickramasinghe, Appl. Phys. Lett. 49, (1986), 1587

    Article  Google Scholar 

  2. G. B. M. Fiege, A. Altes, R. Heiderhoff and L. J. Balk, J. Phys. D: Appl. Phys. 32, L13 (1999).

    Article  Google Scholar 

  3. R.B. Dinwiddie, R.J. Pylkki and P.E. West, Thermal conductivity contrast imaging with a scanning thermal microscope, Thermal conductivity 22, T.W. Wong ed, Tecnomics, Lancaster PA, 668–677, 1994

    Google Scholar 

  4. A. Hammiche, H.M. Pollock, M. Song, D.J. Hourston, Rev. Sci. Instrum. 67, 4268 (1996)

    Article  CAS  Google Scholar 

  5. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M.A. Lantz, H.E. Rothuizen, R. Stutz and G. K. Binnig, IEEE Trans. on Nanotech. 1, 39 (2002)

    Article  Google Scholar 

  6. W.P. King and K.E. Goodson, ASME J. Heat Transf. 124, 597, (2002)

    Article  Google Scholar 

  7. W. A. Challener et al. Nature Photonics 3,220 (2009).

    Article  CAS  Google Scholar 

  8. A. Chimmalgi, D.J. Hwang, and C.P. Grigoropoulos, Nano Lett. 5, 1924 (2005)

    Article  CAS  Google Scholar 

  9. A.A. Milner, K. Zhang, and Y. Prior, Nano Lett. (2008)

  10. O. Fenwick, L. Bozec, D. Credgington, A. Hammiche ., G. M. Lazzerini, Y. R. Silberberg and F. Cacialli, Nature Nanotechnology 4, 668 (2009)

    Article  Google Scholar 

  11. R. Szoszkiewicz, T. Okada, S. C. Jones, T.-D. Li, W. P. King, S. R. Marder, and E. Riedo, Nano Lett. 7, 1064 (2007)

    Article  CAS  Google Scholar 

  12. P.O. Chapuis, J-J. Greffet, K. Joulain and S. Volz. Nanotechnology 17, 2978 (2006).

    Article  CAS  Google Scholar 

  13. Microscale and Nanoscale Heat Transfer, Topics in Applied Physics 16, Vol. 107, S. Volz d., 2007

    Google Scholar 

  14. S. Lefèvre, S. Volz and P.-O. Chapuis. Int. J. Heat Mass Transf. 49, 251 (2006).

    Article  Google Scholar 

  15. L. Shi and A. Majumdar, ASME J. Heat Transf. 124, 329 (2002)

    Article  CAS  Google Scholar 

  16. M. Hinz, O. Marti, B. Botsmann, M.A. Lantz and U. Dürig. Appl. Phy. Lett. 92, 043122 (2008).

    Article  Google Scholar 

  17. S. Lefèvre, S. Volz, C. Fuentes, J.B. Saulnier and N. Trannoy, Rev. Scient. Instr. 74, 2418 (2003)

    Article  Google Scholar 

  18. S. Lefèvre and S. Volz, Rev. Scient. Instr. 76, 033701 (2005)

    Article  Google Scholar 

  19. P.-O. Chapuis, PhD Thesis, Ecole Centrale Paris (2007)

  20. L. Lees and C.Y. Liu, Phys. of Fluids 5, 1137 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapuis, PO., Rousseau, E., Assy, A. et al. Heat transfer between a hot AFM tip and a cold sample: impact of the air pressure. MRS Online Proceedings Library 1543, 159–164 (2013). https://doi.org/10.1557/opl.2013.674

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2013.674

Navigation