Log in

Effect of Carbon Impurity Content on Microstructural Evolution in Neutron-Irradiated Alpha Iron: Cluster Dynamics Modeling

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Cluster dynamics (CD) modeling has been used to estimate the long-term evolution of point defect (PD) clusters. However, previous studies have often simplified the governing equations by assuming the maximum size of mobile self-interstitial atom (SIA) clusters and by ignoring the one-dimensional (1D) reaction kinetics of SIA loops. They have also conducted parameter fittings, such as the clustered fraction and the maximum size of clusters produced by collision cascade, to reproduce experimental data. In this study, in addition to modeling the 1D motion of SIA loops in the framework of the production bias model (PBM), reaction rates associated with carbon impurity atoms present in alpha iron were formulated to consider the trap** effect of one-dimensionally migrating SIA loops by a vacancy-carbon (V-C) complex that was shown to have strong bindings with SIA loops by previous atomistic simulations. Calculations results for neutron-irradiated alpha iron showed that the developed CD model can successfully reproduce the saturation trend of the number density of immobile SIA loops in contrast to the prediction using a model without the trap** effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hayashi, K. Fukumoto, and H. Matsui, J. Nucl. Mater. 307311, 993 (2002).

    Article  Google Scholar 

  2. K. Arakawa, M. Hatanaka, H. Mori, and K. Ono, J. Nucl. Mater. 329333, 1194 (2004).

    Article  CAS  Google Scholar 

  3. K. Arakawa, K. Ono, M. Isshiki, K. Kimura, M. Uchikoshi, and H. Mori, Science 318, 956 (2007).

    Article  CAS  Google Scholar 

  4. T. Yoshiie, M. Horiki, Q. Xu, and K. Sato, J. Nucl. Mater. 367370, 322 (2007).

    Article  CAS  Google Scholar 

  5. Y. Satoh, H. Matsui, and T. Hamaoka, Phys. Rev. B 77, 094135 (2008).

    Article  CAS  Google Scholar 

  6. Y. Satoh, and H. Matsui, Phil. Mag. 89, 1489 (2009).

    Article  CAS  Google Scholar 

  7. T. Hamaoka, Y. Satoh, and H. Matsui, J. Nucl. Mater. 399, 26 (2010).

    Article  CAS  Google Scholar 

  8. B.D. Wirth, G.R. Odette, D. Maroudas, and G.E. Lucas, J. Nucl. Mater. 276, 33 (2000).

    Article  CAS  Google Scholar 

  9. N. Soneda, and T. Dias de la Rubia, Philos. Mag. A 81, 331 (2001).

    Article  CAS  Google Scholar 

  10. J. Marian, B.D. Wirth, A. Caro, B. Sadigh, G.R. Odette, J.M. Perlado, and T. Dias de la Rubia, Phys. Rev. B 65, 144102 (2002).

    Article  CAS  Google Scholar 

  11. Yu.N. Osetsky, D.J. Bacon, A. Serra, B.N. Singh, and S.I. Golubov, Phil. Mag. 83, 61 (2003).

    Article  CAS  Google Scholar 

  12. E. Kuramoto, K. Ohsawa, J. Imai, K. Obata, and T. Tsutsumi, J. Nucl. Mater. 329333, 1223 (2004).

    Article  CAS  Google Scholar 

  13. D. A. Terentyev, L. Malerba, and M. Hou, Phys. Rev. B 75, 104108 (2007).

    Article  CAS  Google Scholar 

  14. C. Domain, C.S. Becquart, and L. Malerba, J. Nucl. Mater. 335, 121 (2004).

    Article  CAS  Google Scholar 

  15. C.S. Becquart, A. Barbu, J.L. Bocquet, M.J. Caturla, C. Domain, C.-C. Fu, S.I. Golubov, M. Hou, L. Malerba, C.J. Ortiz, A. Souidi, and R.E. Stoller, J. Nucl. Mater. 406, 39 (2010).

    Article  CAS  Google Scholar 

  16. K. Tapasa, A. V. Barashev, D. J. Bacon, and Yu. N. Osetsky, J. Nucl. Mater. 361, 52 (2007).

    Article  CAS  Google Scholar 

  17. D. Terentyev, N. Anento, A. Serra, V. Jansson, H. Khater, and G. Bonny, J. Nuc. Mater. 408, 272 (2011).

    Article  CAS  Google Scholar 

  18. Y. Abe, T. Suzudo, S. Jitsukawa, T. Tsuru, and T. Tsukada, Fusion Sci. Technol. 62, 139 (2012).

    Article  CAS  Google Scholar 

  19. D. J. Hepburn, and G. J. Ackland, Phys. Rev. B 78, 165115 (2008).

    Article  CAS  Google Scholar 

  20. Y. Abe, and S. Jitsukawa, Phil. Mag. 89, 375 (2009).

    Article  CAS  Google Scholar 

  21. B.N. Singh, S.I. Golubov, H. Trinkaus, A. Serra, Yu.N. Osetsky, and A.V. Barashev, J. Nucl. Mater. 251, 107 (1997).

    Article  CAS  Google Scholar 

  22. S.I. Golubov, B.N. Singh, and H. Trinkaus, Phil. Mag. A 81, 2533 (2001).

    Article  CAS  Google Scholar 

  23. Y. Abe, T. Suzudo, S. Jitsukawa, T. Tsuru, and T. Tsukada, J. ASTM Int. (2012) (in press).

  24. M.L. Jenkins, C.A. English, and B.L. Eyre, Philos. Mag. A 38, 97 (1978).

    Article  CAS  Google Scholar 

  25. A.C. Nicol, M.L. Jenkins, and M.A. Kirk, Mater. Res. Soc. Symp. Proc. 650, R1.3.1 (2001).

  26. N. Anento, A. Serra, and Yu. N. Osetsky, Modelling Simul. Mater. Sci. Eng. 18, 025008 (2010).

    Article  CAS  Google Scholar 

  27. A. H. Cottrell in Reports on the Strength of Solids (Physical Society, London, 1948), pp. 30.

    Google Scholar 

  28. M. Eldrup, B.N. Singh, S.J. Zinkle, T.S. Byun, and K. Farrell, J. Nucl. Mater. 307311, 912 (2002).

    Article  Google Scholar 

  29. M. Eldrup, and B.N. Singh, J. Nucl. Mater. 323, 346 (2003).

    Article  CAS  Google Scholar 

  30. C. C. Fu, J. D. Torre, F. Willaime, J. L. Bocquet, and A. Barbu, Nat. Mater. 4, 68 (2005).

    Article  CAS  Google Scholar 

  31. R.E. Stoller, J. Nucl. Mater. 276, 22 (2000).

    Article  CAS  Google Scholar 

  32. D. Terentyev, C. Lagerstedt, P. Olsson, K. Nordlund, J. Wallenius, C.S. Becquart, and L. Malerba, J. Nucl. Mater. 351, 65 (2006).

    Article  CAS  Google Scholar 

  33. A. Souidi, C.S. Becquart, C. Domain, D. Terentyev, L. Malerba, A.F. Calder, D.J. Bacon, R.E. Stoller, Yu. N. Osetsky, and M. Hou, J. Nucl. Mater. 355, 89 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, Y., Tsuru, T. & Jitsukawa, S. Effect of Carbon Impurity Content on Microstructural Evolution in Neutron-Irradiated Alpha Iron: Cluster Dynamics Modeling. MRS Online Proceedings Library 1535, 330 (2013). https://doi.org/10.1557/opl.2013.452

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.452

Navigation