Log in

New hybrid inorganic-organic proton conducting membranes based on Nafion and a [(ZrO2)⋅(Ta2O5)0.119] oxide core-shell nanofiller

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Hybrid inorganic-organic proton-conducting membranes are prepared by a standard solvent casting procedure. Nafion® is used as the host polymer and [(ZrO2)⋅(Ta2O5)0.119] “core-shell” nanoparticles (d ~ 10-50 nm) are incorporated as the nanofiller. This filler is characterized by a “core” of ZrO2 nanoparticles covered by a Ta2O5 “shell”. The mechanical properties of the resulting hybrid membranes determined by dynamic mechanical analysis are better than those of pristine Nafion. The elastic modulus of the hybrid membranes with a filler content greater than 5 wt% is at least 1 MPa up to 200°C, while pristine Nafion undergoes an irreversible elongation at 160°C. The hybrid membranes are characterized by promising conductivities above 115°C (7.5×10-2 S⋅cm-1 for 9 wt% nanofiller vs. 3.3×10-2 S⋅cm-1 for pristine Nafion), as determined by broadband electric spectroscopy. The single fuel cell performance at low levels of hydration of the best-performing hybrid membrane (9 wt% nanofiller) is better than that of pristine recast Nafion. The maximum power densities yielded by the MEAs fabricated with pristine Nafion and the hybrid membrane are 0.026 and 0.108 W⋅cm-2, respectively, at 85°C, aH2O = 0.13, a reagent back pressure = 1 bar and using pure oxygen as the oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Di Noto, S. Lavina, G. A. Giffin, E. Negro, B. Scrosati, accepted for publication on Electrochim. Acta (2011), doi: 10.1016/j.electacta.2011.08.048.

    Google Scholar 

  2. V. Di Noto, N. Boaretto, E. Negro, G. A. Giffin, S. Lavina, S. Polizzi, accepted for publication on Int. J. Hydrog. Energy (2011), doi: 10.1016/j.ijhydene.2011.07.132.

    Google Scholar 

  3. W. Grot, “Fuel Cells and Batteris,” Fluorinated Ionomers, (William Andrew Inc., 2008) pp. 137–155.

    Chapter  Google Scholar 

  4. V. Di Noto, E. Negro, J.Y. Sanchez, C. Iojoiu, J. Am. Chem. Soc. 132, 2183 (2010).

    Article  Google Scholar 

  5. Mauritz K. A.; Mat. Sci. Eng. C-Bio. S.; 1998, 6, 121.

    Article  Google Scholar 

  6. Alberti, G.; Casciola, M.; Annu. Rev. Mater. Res., 2003, 33, 129.

    Google Scholar 

  7. Thampan, T.M.; Jalani, N.H.; Choi, P.; Datta, R.; J. Electrochem. Soc., 2005, 152, A316.

    Google Scholar 

  8. Jalani, N.H.; Dunn, K.; Datta, R.; Electrochim. Acta, 2005, 51, 553.

    Article  CAS  Google Scholar 

  9. Aparicio, M.; Klein, L.C.; J. Electrochem. Soc. 152, 2005, A493.

    Article  CAS  Google Scholar 

  10. Satterfield, M.B.; Majsztrik, P.W.; Ota, H.; Benziger, J.B.; Bocarsly, A.B.; J. Polym. Sci. Pol. Phys. 44, 2006, 2327.

    Article  CAS  Google Scholar 

  11. V. Di Noto, M. Piga, L. Piga, S. Polizzi, E. Negro, J. Power Sources 178, 561 (2008).

    Article  Google Scholar 

  12. V. Di Noto, M. Piga, S. Lavina, E. Negro, K. Yoshida, R. Ito, T. Furukawa, Electrochim. Acta 55, 1431 (2010).

    Article  Google Scholar 

  13. V. Di Noto, E. Negro, Fuel Cells 10, 234 (2010).

    Article  Google Scholar 

  14. S.S. Kocha, “Principles of MEA preparation,” Handbook of fuel cells - Fundamentals Technology and Applications, ed. W. Vielstich, A. Lamm, H.A. Gasteiger (John Wiley & Sons, 2003) pp. 538–565.

    Google Scholar 

  15. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B-Environ. 56, 9 (2005).

    Article  CAS  Google Scholar 

  16. V. Di Noto, M. Bettiol, F. Bassetto, N. Boaretto, E. Negro, S. Lavina, F. Bertasi, accepted for publication on Int. J. Hydrog. Energy (2011), doi:10.1016/j.ijhydene.2011.07.131.

    Google Scholar 

  17. V. Di Noto, R. Gliubizzi, E. Negro, G. Pace, J. Phys. Chem. B 110, 24972 (2006).

    Article  Google Scholar 

  18. V. Di Noto, J. Phys. Chem. B 104, 10116 (2000).

    Article  Google Scholar 

  19. M. Vittadello, E. Negro, S. Lavina, G. Pace, A. Safari, V. Di Noto, J. Phys. Chem. B 112, 16590 (2008).

    Article  CAS  Google Scholar 

  20. V. Di Noto, J. Phys. Chem. B 106, 11139 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Italian MURST project PRIN2008, “Direct polymer electrolyte membrane fuel cells: synthesis and study in prototype cells of hybrid inorganic– organic membranes and electrode materials”.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Noto, V., Piga, M., Negro, E. et al. New hybrid inorganic-organic proton conducting membranes based on Nafion and a [(ZrO2)⋅(Ta2O5)0.119] oxide core-shell nanofiller. MRS Online Proceedings Library 1384, 5 (2011). https://doi.org/10.1557/opl.2012.323

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2012.323

Navigation