Log in

Materials Challenges for CdTe and CuInSe2 Photovoltaics

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The record laboratory cell (∼1 cm2 area) efficiency for thin-film cadmium telluride (CdTe) is 16.5%, and that for a copper indium diselenide (CuInSe2) thin-film alloy is 19.5%. Commercially produced CdTe and CuInSe2 modules (0.5–1 m2 area) have efficiencies in the 7–11% range. Research is needed both to increase laboratory cell efficiencies and to bring those small - area efficiencies to large-area production. Increases in laboratory CdTe cell efficiency will require increasing open-circuit voltage, which will allow cells to harvest more energy from each absorbed photon. This will require extending the minority carrier lifetime from its present τ ≤ 2 ns to τ ≥ 10 ns and increasing hole concentration in the CdTe beyond 1015 cm2, which appears to be limited by compensating defects. Increasing laboratory CuInSe2-based cell efficiency significantly beyond 19.5% will also require increasing the open-circuit voltage, either by increasing the bandgap, the do** level, or the minority carrier lifetime. The photovoltaic cells in commercial modules occupy tens of square centimeters, and both models and experiments have shown that low-performing regions in small fractions of a cell can significantly reduce the overall cell per formance. Increases in commercial module efficiency will require control of materials properties across large deposition areas in a high-throughput environment to minimize such non-uniformities. This article discusses approaches used and research needed to increase the ultimate efficiencies of CdTe- and CuInSe2-based devices and translate these gains to commercial photovoltaic modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Green, K. Emery, D.L. King, Y. Hisikawa, and W. Warta, Prog. Photovol. Res. Appl. 14 (1) (2006) p. 35.

    Google Scholar 

  2. M.E. Nell and A.M. Barnett, IEEE Trans. Elec. Dev. ED34 (2) (1987) p. 257.

    Google Scholar 

  3. X. Wu, Sol. Energy 77 (2004) p. 803.

    CAS  Google Scholar 

  4. B.E. McCandless and J.R. Sites, Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus (John Wiley and Sons, 2003) p. 617.

  5. B.E. McCandless and S.S. Hegedus, Proc. 22nd IEEE PVSC (Las Vegas, 1991) p. 967.

  6. B.E. McCandless, Mat. Res. Soc. Symp. Proc. 668 (2001) H1.6.1.

    Google Scholar 

  7. H.R. Moutinho, M.M. Al-Jassim, D.H. Levi, P.C. Pippo, and L.L. Kazmerski, J. Vac. Sci. Technol., A 16 (1998) p. 1251.

    CAS  Google Scholar 

  8. S.-H. Wei and S.B. Zhang, Phys. Rev. B 66 155211-1 (2002).

    Google Scholar 

  9. W.K. Metzger, D. Albin, D. Levi, P. Sheldon, X. Li, B.M. Keyes, and R.K. Ahrenkiel, J. Appl. Phys. 94 (2003) p. 3549.

    CAS  Google Scholar 

  10. V.I. Kaydanov and T.R. Ohno, National Renewable Energy Laboratory Final Technical Report SR-520–31777 (2002).

  11. J.E. Phillips, R.W. Birkmire, B.E. McCandless, P.V. Meyers, and W.N. Shafarman, Phys. Status Solidi B 194 (1996) p. 31.

    CAS  Google Scholar 

  12. R. Mickelsen and W. Chen, Conf. Rec. 15th IEEE PVSC (1981) p. 800.

  13. M.A. Contreras, K. Ramanathan, J. Abushama, F. Hasoon, D.L. Young, B. Egaas, and R. Noufi, Prog. Photovolt. Res. Appl. 13 (3) (2005) p. 209.

    CAS  Google Scholar 

  14. R. Klenk, S. Bakehe, R. Kaigawa, A. Neisser, J. Reis, and M.Ch. Lux-Steiner, Thin Solid Films 451–452 (2004) p. 424.

    Google Scholar 

  15. A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Batzner, F.-J. Haug, M. Kalin, D. Rudman, and A.N. Tiwari, Prog. Photovolt. Res. Appl. 12 (2–3) (2004) p. 93.

    CAS  Google Scholar 

  16. T. Wada, N. Kohara, T. Negami, and M. Nishitani, J. Appl. Phys. 35 (1996) L1253.

    CAS  Google Scholar 

  17. M. Bar, L. Weinhardt, C. Heske, H.-J. Muffler, M.C. Lux - Steiner, E. Umbach, and Ch.-H. Fisher, Prog. Photovolt. Res. Appl. 13 (7) (2005) p. 571.

    Google Scholar 

  18. L. Wang, et al., Mat. Res. Soc. Symp. Proc. 569 (1999) p. 127.

    CAS  Google Scholar 

  19. P.K. Johnson, J.T. Heath, J.D. Cohen, K. Ramanathan, and J.R. Sites, Prog. Photovolt. Res. Appl. 13 (7) (2005) 579.

    CAS  Google Scholar 

  20. C. Persson, Y.-J. Zhao, S. Lany, and A. Zunger, Phys. Rev. B 72 035211-1 (2005).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beach, J.D., McCandless, B.E. Materials Challenges for CdTe and CuInSe2 Photovoltaics. MRS Bulletin 32, 225–229 (2007). https://doi.org/10.1557/mrs2007.26

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.26

Navigation