Log in

Advanced cathode materials for lithium-ion batteries

  • Electrochemical Energy Storage to Power the 21st Century
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

High-energy cathode materials with high working potential and/or high specific capacity are desired for future electrification of vehicles. In this article, we provide a general overview of advanced high-energy cathode materials using different approaches such as core-shell, concentration-gradient materials, and the effects of nanocoatings at the particle level to improve both electrochemical performance and safety. We also summarize the methods used to prepare these materials. Special attention is placed on the co-precipitation process for making dense, spherical particles for the purpose of improving the powder packing density and increasing the electrode energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J.B. Goodenough, H.D. Abruña, M.V. Buchanan, Basic Research Needs for Electrical Energy Storage: Report of the Basic Energy Sciences Workshop on Electrical Energy Storage (U.S. Department of Energy, Office of Basic Energy Sciences, Washington, DC, 2007).

    Google Scholar 

  2. Lawrence Livermore National Laboratory; https://www.llnl.gov/news/newsreleases/2009/NR-09-07-02.html?snc=15601.

  3. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater. 1, 123 (2002).

    CAS  Google Scholar 

  4. K. Amine, I. Belharouak, Z.H. Chen, T. Tran, H. Yumoto, N. Ota, S.T. Myung, Y.-K. Sun, Adv. Mater. 22, 3052 (2010).

    CAS  Google Scholar 

  5. U.S. Department of Energy, Partnership of New Generation Vehicle Battery Test Manual, revision 3, DOE/ID-10597 (2001).

  6. J.S. Kim, C.S. Johnson, J.T. Vaughey, M.M. Thackeray, S.A. Hackney, Chem. Mater. 16, 1996 (2004).

    CAS  Google Scholar 

  7. H.X. Deng, I. Belharouak, R.E. Cook, H.M. Wu, Y.-K. Sun, K. Amine, J. Electrochem. Soc. 157, A447 (2010).

  8. Z. Lu, D.D. MacNeil, J.R. Dahn, Electrochem. Solid-State Lett. 4, A192 (2001).

  9. Z.H. Lu, J.R. Dahn, J. Electrochem. Soc. 149, A1454 (2002).

  10. Y.-K. Sun, J.-M. Han, S.-T. Myung, S.-W. Lee, K. Amine, Electrochem. Commun. 8, 821 (2006).

    CAS  Google Scholar 

  11. Y.-K. Sun, S.-W. Cho, S.-W. Lee, C.S. Yoon, K. Amine, J. Electrochem. Soc. 154, A168 (2007).

  12. Y.-K. Sun, S.-W. Cho, S.-T. Myung, K. Amine, J. Prakash, Electrochim. Acta 53, 1013 (2007).

    CAS  Google Scholar 

  13. H.-B. Kim, B.-C. Park, S.-T. Myung, K. Amine, J. Prakash, Y.-K. Sun, J. Power Sources 179, 347 (2008).

    CAS  Google Scholar 

  14. B.-C. Park, H.-B. Kim, S.-T. Myung, K. Amine, I. Belharouak, S.-M. Lee, Y.-K. Sun, J. Power Sources 178, 826 (2008).

    CAS  Google Scholar 

  15. Y.-K. Sun, C.S. Yoon, S.-T. Myung, I. Belharouak, K. Amine, J. Electrochem. Soc. 156, A1005 (2009).

  16. S.-T. Myung, K.-S. Lee, C.S. Yoon, Y.-K. Sun, K. Amine, H. Yashiro, J. Phys. Chem. C 114, 4710 (2010).

    CAS  Google Scholar 

  17. H. Deng, I. Belharouak, C.S. Yoon, Y.-K. Sun, K. Amine, J. Electrochem. Soc. 157, A1035 (2010).

  18. H.C. Lin, J.M. Zheng, Y. Yang, Mater. Chem. Phys. 119, 519 (2010).

    CAS  Google Scholar 

  19. J.M. Zheng, Z.R. Zhang, X.B. Wu, Z.X. Dong, Z. Zhu, Y. Yang, J. Electrochem. Soc. 155, A775 (2008).

  20. Y.-K. Sun, S.-T. Myung, M.-H. Kim, J. Prakash, K. Amine, J. Am. Chem. Soc. 127, 13411 (2005).

    CAS  Google Scholar 

  21. Y.-K. Sun, S.-T. Myung, M.-H. Kim, J.-H. Kim, Electrochem. Solid-State Lett. 9, A171 (2006).

  22. Y.-K. Sun, S.-T. Myung, H.-S. Shin, Y.C. Bae, C.S. Yoon, J. Phys. Chem. B 110, 6810 (2006).

    CAS  Google Scholar 

  23. Y.-K. Sun, S.-T. Myung, B.-C. Park, K. Amine, Chem. Mater. 18, 5159 (2006).

    CAS  Google Scholar 

  24. B.-C. Park, H.J. Bang, K. Amine, E. Jung, Y.-K. Sun, J. Power Sources 174, 658 (2007).

    CAS  Google Scholar 

  25. K.-S. Lee, S.-T. Myung, Y.-K. Sun, J. Power Sources 195, 6043 (2010).

    CAS  Google Scholar 

  26. Z.L. Yang, C. Cao, F.F. Liu, D.R. Chen, X.L. Jiao, Solid State Ionics 181, 678 (2010).

    CAS  Google Scholar 

  27. W.M. Zhang, J.S. Hu, Y.G. Guo, S.F. Zheng, L.S. Zhong, W.G. Song, L.J. Wan, Adv. Mater. 20, 1160 (2008).

    CAS  Google Scholar 

  28. Z.L. Yang, C. Cao, F.F. Liu, D.R. Chen, X.L. Jiao, Solid State Ionics 181, 678 (2010).

    CAS  Google Scholar 

  29. M. Jo, Y.K. Lee, K.M. Kim, J. Cho, J. Electrochem. Soc. 157, A841 (2010).

  30. X.-L. Wang, M. Feygenson, M.C. Aronson, W.-Q. Han, J. of Phy. Chem. C 114, 14697 (2010).

    CAS  Google Scholar 

  31. Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, K. Amine, Nat. Mater. 8, 320 (2009).

    CAS  Google Scholar 

  32. Y.-K. Sun, D.-H. Kim, C.S. Yoon, S.-T. Myung, J. Prakash, K. Amine, Adv. Funct. Mater. 20, 485 (2010).

    Google Scholar 

  33. Y.-K. Sun, D.-H. Kim, H.-G. Jung, S.-T. Myung, K. Amine, Electrochim. Acta 55, 8621 (2010).

    CAS  Google Scholar 

  34. Y.-K. Sun, B.-R. Lee, H.-J. Noh, H. Wu, S.T. Myung, K. Amine, J. Mater. Chem. (2011); DOI:10.1039/c0jm04242k.

  35. M.S. Bhuwaneswari, L. Dimesso, W. Jaegermann, J. Sol–Gel Sci. Technol. 56, 320 (2010).

    CAS  Google Scholar 

  36. N. Jayaprakash, N. Kalaiselvi, C.H. Doh, Gangulibabu, D. Bhuvaneswari, J. Appl. Electrochem. 40, 2193 (2010).

    CAS  Google Scholar 

  37. S. Soltanmohammad, S. Asgari, J. Nanomater. Article ID 695083 (2010); DOI:10.1155/2010/104012.

  38. K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, J. Power Sources 117, 131 (2003).

    CAS  Google Scholar 

  39. D. Yoshikawa, Y. Kadoma, J.M. Kim, K. Ui, N. Kumagai, N. Kitamura, Y. Idemoto, Electrochim. Acta 55, 1872 (2010).

    CAS  Google Scholar 

  40. F. Yu, J.J. Zhang, Y.F. Yang, G.Z. Song, J. Appl. Electrochem. 14, 883 (2010).

    CAS  Google Scholar 

  41. M.-H. Lee, Y.-J. Kang, S.-T. Myung, Y.-K. Sun, Electrochim. Acta 50, 939 (2004).

    CAS  Google Scholar 

  42. A.V. Bommel, J.R. Dahn, J. Electrochem. Soc. 156, A362 (2009).

  43. J.H. Lim, H.J. Bang, K.S. Lee, K. Amine, Y.K. Sun, J. Power Sources 189, 571 (2009).

    CAS  Google Scholar 

  44. S.-H. Park, H.-S. Shin, S.-T. Myung, C.S. Yoon, K. Amine, Y.-K. Sun, Chem. Mater. 17, 6 (2005).

    CAS  Google Scholar 

  45. G.-H. Kim, S.-T. Myung, H.J. Bang, J. Prakash, Y.-K. Sun, Electrochem. Solid-State Lett. 7, A477 (2004).

  46. Z.H. Chen, Y. Qin, K. Amine, Y.-K. Sun, J. Mater. Chem. 20, 7606 (2010).

    CAS  Google Scholar 

  47. Y.-K. Sun, K.-J. Hong, J. Prakash, K. Amine, Electrochem. Commun. 4, 344 (2002).

    CAS  Google Scholar 

  48. J. Akimoto, Y. Takahashi, N. Kijima, Electrochem. Solid-State Lett. 8, A361 (2005).

  49. K. Amine, J. Liu, I. Belharouak, S.H. Kang, I. Bloom, D. Vissers, G. Henriksen, J. Power Sources 146, 111 (2005).

    CAS  Google Scholar 

  50. W.Q. Lu, Z.H. Chen, H. Joachin, J. Prakash, J. Liu, K. Amine, J. Power Sources 163, 1074 (2007).

    CAS  Google Scholar 

  51. Z.H. Chen, Y. Qin, J. Liu, K. Amine, Electrochem. Solid-State Lett. 12, A69 (2009).

  52. M. Mladenov, R. Stoyanova, E. Zhecheva, S. Vassilev, Electrochem. Commun. 3, 410 (2001).

    CAS  Google Scholar 

  53. J. Cho, C.S. Kim, S.I. Yoo, Electrochem. Solid-State Lett. 3, 362 (2000).

    CAS  Google Scholar 

  54. Z.H. Chen, J.R. Dahn, Electrochim. Acta 49, 1079 (2004).

    CAS  Google Scholar 

  55. S.-T. Myung, K. Izumi, S. Komaba, Y.-K. Sun, H. Yashiro, N. Kumagai, Chem. Mater. 17, 3695(2005).

  56. J.-M. Han, S.-T. Myung, Y.-K. Sun, J. Electrochem. Soc. 153, A1290, (2006).

  57. Y. Wu, A.V. Murugan, A. Manthiram, J. Electrochem. Soc. 155, A635, (2008).

  58. D.Q. Liu, Z.Z. He, X. Liu, Mater. Lett. 61, 4703 (2007).

    CAS  Google Scholar 

  59. D. Ahn, J.G. Lee, J.S. Lee, J. Kim, J. Cho, B. Park, Cur. Appl. Phys. 7, 172 (2007).

    Google Scholar 

  60. S.-T. Myung, K. Izumi, S. Komaba, H. Yashiro, H.J. Bang, Y.-K. Sun, N. Kumagai, J. Phys. Chem. C 111, 4061 (2007).

    CAS  Google Scholar 

  61. B.J. Hwang, C.Y. Chen, M.Y. Cheng, R. Santhanam, K. Ragavendran, J. Power Sources 195, 4255 (2010).

    CAS  Google Scholar 

  62. S.H. Kang, J. Kim, M.E. Stoll, D. Abraham, Y.K. Sun, K. Amine, J. Power Sources 112, 41 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

The research of Z. Chen and K. Amine is funded by the U.S. Department of Energy, FreedomCAR, and Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by the UChicago Argonne, LLC, under contract DE-AC02-06CH11357. The work of D.-J. Lee and Y.-K. Sun was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded from the Ministry of Education, Science and Technology (MEST) of Korea for the Center for Next Generation Dye-sensitized Solar Cells (No. 2010-0001842) and by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonghai Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Lee, DJ., Sun, YK. et al. Advanced cathode materials for lithium-ion batteries. MRS Bulletin 36, 498–505 (2011). https://doi.org/10.1557/mrs.2011.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.155

Navigation