Log in

Fast smoothing on diamond surface by inductively coupled plasma reactive ion etching

  • Article
  • The Science and Technology of Vapor Phase Processing and Modification of Surfaces
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The synergetic effects of surface smoothing exhibited during the inductively coupled plasma reactive ion etching (ICP-RIE) of free-standing polycrystalline diamonds (PCDs) were investigated. Changing the assistive gas types generated variable surface oxidation states and chemical environments that resulted in different etching rates and surface morphologies. The main reaction bond mechanism (C–O) during ICP-RIE and the ratio of C–O–C/O–C=O associated with the existence of a uniform smooth surface with root mean square (RMS) roughness of 2.36 nm were observed. An optimal process for PCD smoothing at high etching rate (4.6 µm/min) was achieved as follows: 10% gas additions of CHF3 in O2 plasma at radio frequency power of 400 W. The further etched ultra-smooth surface with RMS roughness <0.5 nm at etching rate of 0.23 µm/min that being produced by transferring this optimum recipe on single crystal diamonds with surface patterns confirmed the effectiveness of the fast smoothing approach and its feasibility for diamond surface patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V.G. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, and M.D. Lukin: Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  2. Y.T. Zheng, J.L. Liu, J.J. Wang, Z.C. Li, H. Hao, J.J. Wei, L.X. Chen, H.T. Ye, and C.M. Li: The direct-current characteristics and surface repairing of a hydrogen-terminated free-standing polycrystalline diamond in aqueous solutions. J. Phys. Chem. Solids 130, 111–119 (2019).

    Article  CAS  Google Scholar 

  3. E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Me’nik, N.J. Curro, J.D. Thompson, and S.M. Stishov: Superconductivity in diamond. Nature 428, 542–545 (2002).

    Article  Google Scholar 

  4. X.L. Yuan, Y.T. Zheng, X.H. Zhu, J.L. Liu, J.W. Liu, C.M. Li, P. **, and Z.G. Wang: Recent progress in diamond based MOSFETs. Int. J. Miner., Metall. Mater. 26, 1195–1205 (2019).

    Article  CAS  Google Scholar 

  5. R.S. Sussmann, ed.: CVD Diamond for Electronic Devices and Sensors (John Wiley & Sons, Chichester, 2009).

    Google Scholar 

  6. K. Nojiri, ed.: Dry Etching Technology for Semiconductors (Springer, Switzerland, 2012).

    Google Scholar 

  7. Y. Tao and C.L. Degen: Single-crystal diamond nanowire tips for ultrasensitive force microscopy. Nano Lett. 15, 7893–7897 (2015).

    Article  CAS  Google Scholar 

  8. A. Toros, M. Kiss, T. Graziosi, H. Sattari, P. Gallo, and N. Quack: Precision micro-mechanical components in single crystal diamond by deep reactive ion etching. Microsyst. Nanoeng. 4, 12 (2018).

    Article  Google Scholar 

  9. J. Achard, A. Tallaire, V. Mille, M. Naamoun, O. Brinza, A. Boussadi, L. William, and A. Gicquel: Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo mechanical or ICP treatment of HPHT substrates. Phys. Status Solidi A 212, 2264–2267 (2014).

    Article  Google Scholar 

  10. M.P. Hiscocks, C.J. Kaalund, F. Ladouceur, L. François, S.T. Huntington, B.C. Gibson, S. Trpkovski, D. Simpson, L.A. Eric, P. Steven, and B.E. James: Reactive ion etching of waveguide structures in diamond. Diamond Relat. Mater. 17, 1831–1834 (2008).

    Article  CAS  Google Scholar 

  11. T. Izak, A. Kromka, O. Babchenko, M. Ledinsky, K. Hruska, and E. Verveniotis: Comparative study on dry etching of polycrystalline diamond thin films. Vacuum 86, 799–802 (2012).

    Article  CAS  Google Scholar 

  12. S. Kunuku, K.J. Sankaran, C. Tsai, W. Chang, N. Tai, K. Leou, and I.N. Lin: Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications. ACS Appl. Mater. Interfaces 5, 7439–7449 (2013).

    Article  CAS  Google Scholar 

  13. P. Leech, G. Reeves, and A. Holland: Reactive ion etching of diamond in CF4, O2, O2, and Ar-based mixtures. J. Mater. Sci. 14, 3453–3459 (2001).

    Article  Google Scholar 

  14. H. Shiomi: Reactive ion etching of diamond in O2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes. Jpn. J. Appl. Phys. 36, 7745 (1997).

    Article  CAS  Google Scholar 

  15. O. Dorsch, M. Werner, and E. Obermeier: Dry etching of undoped and boron doped polycrystalline diamond films. Diamond Relat. Mater. 4, 456–459 (1995).

    Article  CAS  Google Scholar 

  16. Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, and K. Oura: Smooth and high-rate reactive ion etching of diamond. Diamond Relat. Mater. 11, 824–827 (2002).

    Article  CAS  Google Scholar 

  17. J. Schmitt, W. Nelissen, U. Wallrabe, and F. Völklein: Implementation of smooth nanocrystalline diamond microstructures by combining reactive ion etching and ion beam etching. Diamond Relat. Mater. 79, 164–172 (2017).

    Article  CAS  Google Scholar 

  18. C.L. Lee, E. Gu, M.D. Dawson, I. Friel, and G.A. Scarsbrook: Etching and micro-optics fabrication in diamond using chlorine-based inductively coupled plasma. Diamond Relat. Mater. 17, 1292–1296 (2008).

    Article  CAS  Google Scholar 

  19. T. Yamada, H. Yoshikawa, H. Uetsuka, K. Somu, T. Norio, and S.S. Ichi: Cycle of two-step etching process using ICP for diamond MEMS applications. Diamond Relat. Mater. 16, 996–999 (2007).

    Article  CAS  Google Scholar 

  20. P. Forsberg and M. Karlsson: High aspect ratio optical gratings in diamond. Diamond Relat. Mater. 34, 19–24 (2013).

    Article  CAS  Google Scholar 

  21. A.B. Muchnikov, A.L. Vikharev, J.E. Butler, V.V. Chernov, V.A. Isaev, S.A. Bogdanov, A.I. Okhapkin, P.A. Yunin, and Y.N. Drozdov: Homoepitaxial growth of CVD diamond after ICP pretreatment. Phys. Status Solidi 212, 2572–2577 (2015).

    Article  CAS  Google Scholar 

  22. H. Uetsuka, T. Yamada, and S. Shikata: ICP etching of polycrystalline diamonds: Fabrication of diamond nano-tips for AFM cantilevers. Diamond Relat. Mater. 17, 728–731 (2008).

    Article  CAS  Google Scholar 

  23. Z. Cui, ed.: Micro-Nanofabrication Technologies and Applications (Higher Education Press, China, 2009).

    Google Scholar 

  24. S. Castelletto, L. Rosa, J. Blackledge, M. Zaher, A. Abri, and A. Boretti: Advances in diamond nanofabrication for ultrasensitive devices. Microsyst. Nanoeng. 3, 17061 (2017).

    Article  Google Scholar 

  25. M.J. Jackson and W. Ahmed, eds.: Micro and Nano-Manufacturing, Vol. II (Springer, New York, 2018).

    Google Scholar 

  26. Y.T. Zheng, H.T. Ye, J.L. Liu, J.J. Wei, L.X. Chen, and C.M. Li: Surface morphology evolution for polycrystalline diamond by inductively coupled plasma reactive ion etching (ICP-RIE). Mater. Lett. 253, 276–280 (2019).

    Article  CAS  Google Scholar 

  27. S. Iqbal, M.S. Rafique, S. Akhtar, N. Liaqat, N. Iqbal, and R. Ahma: A comparative study on finding an effective root for the introduction of hydrogen into micro plasma during diamond growth. J. Phys. Chem. Solids 122, 72–86 (2018).

    Article  CAS  Google Scholar 

  28. A. Dychalska, K. Fabisiak, K. Paprocki, M. Jarosław, I. Aizhan, and S. Mirosław: A Raman spectroscopy study of the effect of thermal treatment on structural and photoluminescence properties of CVD diamond films. Mater. Des. 15, 320–327 (2016).

    Article  Google Scholar 

  29. B.V. Crist: XPS in industry—Problems with binding energies in journals and binding energy databases. J. Electron Spectrosc. Relat. Phenom. 231, 75–87 (2019).

    Article  CAS  Google Scholar 

  30. M. Varga, T. Izak, V. Vretenar, H. Kozak, J. Holovsky, A. Artemenko, M. Hulman, V. Skakalova, D.S. Lee, and A. Kromka: Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon 111, 54–61 (2017).

    Article  CAS  Google Scholar 

  31. X.Y. Pan, L.J. Wang, Q.K. Zeng, L.Y. Shi, R. Xu, J. Huang, K. Tang, and Y.B. **a: XPS study of polycrystalline diamond surfaces after annealing treatment. Surf. Coat. Technol. 228, S446–S448 (2013).

    Article  CAS  Google Scholar 

  32. J. Birrell, J. Gerbi, O. Auciello, J. Gibson, D. Gruen, and J. Carlisle: Bonding structure in nitrogen doped ultrananocrystalline diamond. J. Appl. Phys. 93, 5606–5612 (2003).

    Article  CAS  Google Scholar 

  33. M.M. Hassan and K. Larsson: Effect of surface termination on diamond (100) surface electrochemistry. J. Phys. Chem. C 118, 22995–23002 (2014).

    Article  CAS  Google Scholar 

  34. A. Tressaud, F. Moguet, S. Flandrois, M. Chambon, C. Guimon, G. Nanse, E. Papirer, V. Gupta, and O.P. Bahl: On the nature of C–F bonds in various fluorinated carbon materials: XPS and TEM investigations. J. Phys. Chem. Solids 57, 745–751 (1996).

    Article  CAS  Google Scholar 

  35. J.D. Dunitz and R. Taylor: Organic fluorine hardly ever accepts hydrogen bonds. Chem. — Eur. J. 3, 89–98 (1997).

    Article  CAS  Google Scholar 

  36. B. Sun, X. Zhang, Q. Zhang, and Z. Lin: Effect of atomic hydrogen and oxygen on diamond growth. J. Appl. Phys. 73, 4614–4617 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2016YFE0133200), the European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme (No. 734578), and Nano-X Experimental Cooperation Project (H008-2017). Special thanks to the national high-level university-sponsored graduate program of China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengming Li or Haitao Ye.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Liu, J., Zhang, R. et al. Fast smoothing on diamond surface by inductively coupled plasma reactive ion etching. Journal of Materials Research 35, 462–472 (2020). https://doi.org/10.1557/jmr.2019.369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.369

Navigation