Log in

Irradiation responses and defect behavior of single-phase concentrated solid solution alloys

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single-phase concentrated solid solution alloys (SP-CSAs) are newly emerging advanced structural materials, which are defined as multiprincipal element solid solutions. SP-CSAs with more than four components in equimolar or near-equimolar ratios are also referred to as high-entropy alloys due to their high configurational entropy. SP-CSAs are potential structural materials in advanced nuclear energy systems due to their attractive mechanical properties. Therefore many investigations have been carried out to study the irradiation-induced structural damage and defect behavior in SP-CSAs. This paper reviews recent experimental results on the irradiation responses of various SP-CSAs, focusing on the accumulation of irradiation-induced structural damage, void swelling resistance, and solute segregation behavior. In addition, the characteristic defect behavior in SP-CSAs derived from ab initio and molecular dynamics simulations, as well as the challenges in the applications of SP-CSAs for the nuclear energy systems are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. S. Chu and A. Majumdar: Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012).

    Article  CAS  Google Scholar 

  2. Y. Guérin, G.S. Was, and S.J. Zinkle: Materials challenges for advanced nuclear energy systems. MRS Bull. 34, 10 (2009).

    Google Scholar 

  3. S.J. Zinkle and G. Was: Materials challenges in nuclear energy. Acta Mater. 61, 735 (2013).

    Article  CAS  Google Scholar 

  4. G. Odette, M. Alinger, and B. Wirth: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).

    Article  CAS  Google Scholar 

  5. T. Allen, H. Burlet, R.K. Nanstad, M. Samaras, and S. Ukai: Advanced structural materials and cladding. MRS Bull. 34, 20 (2009).

    Article  CAS  Google Scholar 

  6. S.J. Zinkle and L.L. Snead: Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44, 241 (2014).

    Article  CAS  Google Scholar 

  7. P. Yvon: Structural Materials for Generation IV Nuclear Reactors (Woodhead Publishing, Kidlington, U.K., 2016); pp. 569–586.

    Google Scholar 

  8. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  9. B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

    Article  CAS  Google Scholar 

  10. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).

    Article  CAS  Google Scholar 

  11. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).

    Article  CAS  Google Scholar 

  12. C-Y. Hsu, J-W. Yeh, S-K. Chen, and T-T. Shun: Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465 (2004).

    Article  Google Scholar 

  13. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74 (2004).

    Article  CAS  Google Scholar 

  14. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  15. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).

    Article  CAS  Google Scholar 

  16. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154 (2008).

    Article  Google Scholar 

  17. C-Y. Hsu, W-R. Wang, W-Y. Tang, S-K. Chen, and J-W. Yeh: Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys. Adv. Eng. Mater. 12, 44 (2010).

    Article  CAS  Google Scholar 

  18. Y. Chen, U. Hong, J. Yeh, and H. Shih: Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 °C high-purity water. Scripta Mater. 54, 1997 (2006).

    Article  CAS  Google Scholar 

  19. W. Zhang, P.K. Liaw, and Y. Zhang: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).

    Article  CAS  Google Scholar 

  20. K-Y. Tsai, M-H. Tsai, and J-W. Yeh: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).

    Article  CAS  Google Scholar 

  21. Y. Zhang, G.M. Stocks, K. **, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, and W.J. Weber: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).

    Article  CAS  Google Scholar 

  22. C. Lu, L. Niu, N. Chen, K. **, T. Yang, P. **u, Y. Zhang, F. Gao, H. Bei, and S. Shi: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 13564 (2016).

    Article  CAS  Google Scholar 

  23. T. Koppenaal, W. Yeh, and R. Cotterill: Lattice defects in neutron irradiated αCu solid solution alloys. Philos. Mag. 13, 867 (1966).

    Article  CAS  Google Scholar 

  24. S. Zinkle: Microstructure and properties of copper alloys following 14-MeV neutron irradiation. J. Nucl. Mater. 150, 140 (1987).

    Article  CAS  Google Scholar 

  25. C. English: Low-dose neutron irradiation damage in FCC and BCC metals. J. Nucl. Mater. 108, 104 (1982).

    Article  Google Scholar 

  26. A. Stathopoulos, C. English, B. Eyre, and P. Hirsch: The effect of alloying additions on collision cascades in heavy-ion irradiated copper solid solutions. Philos. Mag. A 44, 309 (1981).

    Article  CAS  Google Scholar 

  27. T. Robinson and M. Jenkins: Heavy-ion irradiation of nickel and nickel alloys. Philos. Mag. A 43, 999 (1981).

    Article  CAS  Google Scholar 

  28. N. Hashimoto, T. Byun, and K. Farrell: Microstructural analysis of deformation in neutron-irradiated fcc materials. J. Nucl. Mater. 351, 295 (2006).

    Article  CAS  Google Scholar 

  29. D.S. Aidhy, C. Lu, K. **, H. Bei, Y. Zhang, L. Wang, and W.J. Weber: Point defect evolution in Ni, NiFe, and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 99, 69 (2015).

    Article  CAS  Google Scholar 

  30. F. Granberg, K. Nordlund, M.W. Ullah, K. **, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).

    Article  CAS  Google Scholar 

  31. K. **, W. Guo, C. Lu, M.W. Ullah, Y. Zhang, W.J. Weber, L. Wang, J.D. Poplawsky, and H. Bei: Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni–Fe solid solution alloys. Acta Mater. 121, 365 (2016).

    Article  CAS  Google Scholar 

  32. C. Lu, K. **, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Christen, and R.E. Stoller: Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci. Rep. 6, 19994 (2016).

    Article  CAS  Google Scholar 

  33. F. Otto, Y. Yang, H. Bei, and E.P. George: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).

    Article  CAS  Google Scholar 

  34. M-R. He, S. Wang, S. Shi, K. **, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, and I.M. Robertson: Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater. 126, 182 (2017).

    Article  CAS  Google Scholar 

  35. C. Lu, T. Yang, K. **, N. Gao, P. **u, Y. Zhang, F. Gao, H. Bei, W.J. Weber, K. Sun, Y. Dong, and L. Wang: Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 127, 98 (2017).

    Article  CAS  Google Scholar 

  36. M. **, P. Cao, and M.P. Short: Thermodynamic mixing energy and heterogeneous diffusion uncover the mechanisms of radiation damage reduction in single-phase Ni–Fe alloys. Acta Mater. 147, 16 (2018).

    Article  CAS  Google Scholar 

  37. K. **, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, and H. Bei: Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scripta Mater. 119, 65 (2016).

    Article  CAS  Google Scholar 

  38. E. Levo, F. Granberg, C. Fridlund, K. Nordlund, and F. Djurabekova: Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys. J. Nucl. Mater. 490, 323 (2017).

    Article  CAS  Google Scholar 

  39. Y. Zhang, S. Zhao, W.J. Weber, K. Nordlund, F. Granberg, and F. Djurabekova: Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 221 (2017).

    Article  CAS  Google Scholar 

  40. K. **, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, and H. Bei: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).

    Article  CAS  Google Scholar 

  41. N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230 (2016).

    Article  CAS  Google Scholar 

  42. T. Yang, S. **a, W. Guo, R. Hu, J.D. Poplawsky, G. Sha, Y. Fang, Z. Yan, C. Wang, and C. Li: Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy. Scripta Mater. 144, 31 (2018).

    Article  CAS  Google Scholar 

  43. M-R. He, S. Wang, K. **, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, and I.M. Robertson: Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation. Scripta Mater. 125, 5 (2016).

    Article  CAS  Google Scholar 

  44. B.D. Wirth, M.J. Caturla, T. Diaz de la Rubia, T. Khraishi, and H. Zbib: Mechanical property degradation in irradiated materials: A multiscale modeling approach. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 23 (2001).

    Article  CAS  Google Scholar 

  45. B.D. Wirth, G.R. Odette, J. Marian, L. Ventelon, J.A. Young-Vandersall, and L.A. Zepeda-Ruiz: Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. J. Nucl. Mater. 329–333 (Part A), 103 (2004).

    Article  Google Scholar 

  46. L. Malerba, A. Caro, and J. Wallenius: Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys. J. Nucl. Mater. 382, 112 (2008).

    Article  CAS  Google Scholar 

  47. A.F. Voter: Introduction to the kinetic Monte Carlo method. In Radiation Effects in Solids, K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga, eds. (Springer, Dordrecht, The Netherlands, 2007); p. 1.

    Google Scholar 

  48. A. Chatterjee and D.G. Vlachos: An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J. Comput. Aided Mater. Des. 14, 253 (2007).

    Article  Google Scholar 

  49. S.J. Zhao, G.M. Stocks, and Y.W. Zhang: Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. Phys. Chem. Chem. Phys. 18, 24043 (2016).

    Article  CAS  Google Scholar 

  50. S. Zhao, T. Egami, G.M. Stocks, and Y. Zhang: Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys. Phys. Rev. Mater. 2, 013602 (2018).

    Article  CAS  Google Scholar 

  51. W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z.P. Lu, D. Li, Y. Li, C.T. Liu, and X-Q. Chen: Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance. J. Mater. Sci. Technol. 34, 355 (2017).

    Article  Google Scholar 

  52. S.C. Middleburgh, D.M. King, G.R. Lumpkin, M. Cortie, and L. Edwards: Segregation and migration of species in the CrCoFeNi high entropy alloy. J. Alloy. Comp. 599, 179 (2014).

    Article  CAS  Google Scholar 

  53. M.W. Ullah, D.S. Aidhy, Y. Zhang, and W.J. Weber: Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys. Acta Mater. 109, 17 (2016).

    Article  CAS  Google Scholar 

  54. D. Chakraborty and D.S. Aidhy: Cr-induced fast vacancy cluster formation and high Ni diffusion in concentrated Ni–Fe–Cr alloys. J. Alloy. Comp. 725 (Suppl. C), 449 (2017).

    Article  CAS  Google Scholar 

  55. L.K. Béland, C. Lu, Y.N. Osetskiy, G.D. Samolyuk, A. Caro, L. Wang, and R.E. Stoller: Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys. J. Appl. Phys. 119, 085901 (2016).

    Article  Google Scholar 

  56. L.K. Béland, Y.N. Osetsky, and R.E. Stoller: The effect of alloying nickel with iron on the supersonic ballistic stage of high energy displacement cascades. Acta Mater. 116, 136 (2016).

    Article  Google Scholar 

  57. L. Koch, F. Granberg, T. Brink, D. Utt, K. Albe, F. Djurabekova, and K. Nordlund: Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system. J. Appl. Phys. 122, 105106 (2017).

    Article  Google Scholar 

  58. S. Zhao, G. Velisa, H. Xue, H. Bei, W.J. Weber, and Y. Zhang: Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Mater. 125, 231 (2017).

    Article  CAS  Google Scholar 

  59. S. Zhao, Y. Osetsky, and Y. Zhang: Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo, and NiCoCr. Acta Mater. 128, 391 (2017).

    Article  CAS  Google Scholar 

  60. Y.N. Osetsky, L.K. Béland, and R.E. Stoller: Specific features of defect and mass transport in concentrated fcc alloys. Acta Mater. 115, 364 (2016).

    Article  CAS  Google Scholar 

  61. G. Bonny, N. Castin, and D. Terentyev: Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 21, 085004 (2013).

    Article  CAS  Google Scholar 

  62. S. Zhao, Y.N. Osetsky, and Y. Zhang: Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys. J. Alloy. Comp. 701, 1003 (2017).

    Article  CAS  Google Scholar 

  63. G. Velişa, E. Wendler, S. Zhao, K. **, H. Bei, W. Weber, and Y. Zhang: Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys. Mater. Res. Lett. 6, 136 (2018).

    Article  Google Scholar 

  64. A. Kohyama, A. Hishinuma, D.S. Gelles, R.L. Klueh, W. Dietz, and K. Ehrlich: Low-activation ferritic and martensitic steels for fusion application. J. Nucl. Mater. 233, 138 (1996).

    Article  Google Scholar 

  65. G. Velişa, M.W. Ullah, H. Xue, K. **, M.L. Crespillo, H. Bei, W.J. Weber, and Y. Zhang: Irradiation-induced damage evolution in concentrated Ni-based alloys. Acta Mater. 135, 54 (2017).

    Article  Google Scholar 

  66. K. Ming, X. Bi, and J. Wang: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scripta Mater. 137, 88 (2017).

    Article  CAS  Google Scholar 

  67. S. Gorsse, D.B. Miracle, and O.N. Senkov: Map** the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).

    Article  CAS  Google Scholar 

  68. D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, and Y. Zhang: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 123, 285 (2017).

    Article  CAS  Google Scholar 

  69. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).

    Article  CAS  Google Scholar 

  70. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov: Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng., A 533, 107 (2012).

    Article  CAS  Google Scholar 

  71. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, and Z.P. Lu: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

TY, CY, and SJZ were supported by the Office of Fusion Energy, U.S. Department of Energy (Grant No. DE-SC0006661 with the University of Tennessee). YZ, SZ, and HB were supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Zinkle.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Li, C., Zinkle, S.J. et al. Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. Journal of Materials Research 33, 3077–3091 (2018). https://doi.org/10.1557/jmr.2018.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.285

Navigation